Browse

You are looking at 11 - 20 of 49 items for

  • By Author: Johnson, J. Patrick x
Clear All
Free access

Terrence T. Kim, Doniel Drazin, Faris Shweikeh, Robert Pashman and J. Patrick Johnson

Object

Intraoperative CT image–guided navigation (IGN) has been increasingly incorporated into minimally invasive spine surgery (MIS). The vast improvement in image resolution and virtual real-time images with CT-IGN has proven superiority over traditional fluoroscopic techniques. The authors describe their perioperative MIS technique using the O-arm with navigation, and they report their postoperative experience, accuracy results, and technical aspects.

Methods

A retrospective review of 48 consecutive adult patients undergoing minimally invasive percutaneous posterior spinal fusion with intraoperative CT-IGN between July 2010 and August 2013 at Cedars-Sinai Medical Center was performed. Two surgeons assessed 290 screws in a blinded fashion on intraoperative O-arm images and postoperative CT scans for bony pedicle wall breach. Grade 1 breach was defined to be < 2 mm, Grade 2 breach to be between 2 and 4 mm, and a Grade 3 breach to be > 4 mm. Additionally, anterior vertebral body breach was recorded.

Results

Of 290 pedicle screws placed, 280 (96.6%) were in an acceptable position without cortical wall or anterior breach. Of the 10 breaches (3.4%) 5 were lateral (50%), 4 were medial, and 1 was anterior; 90% of breaches were Grade 1–2 and all medial breaches were Grade 1. The one Grade 3 breach was lateral. No vascular or neurological complications were observed intraoperatively, and no significant postoperative complications were noted. The mean clinical follow-up period was 18 months (range 3–39 months). The overall clinical outcomes, measured using the visual analog scale (back pain scores), were improved significantly postoperatively at 3 months compared with preoperatively (visual analog score 6.35 vs 3.57; p < 0.0001). No revision surgery was performed for screw misplacement or neurological deterioration.

Conclusions

New CT-IGN with the mobile O-arm scanner has increased the accuracy of pedicle screw/instrumentation placement using MIS techniques. The authors' high (96.6%) accuracy rate in MIS compares favorably with historical published accuracy rates for fluoroscopy-based techniques. Additional advantages of CT-IGN over fluoroscopic imaging methods are lower occupational radiation exposure for the surgical team, reduced need for postoperative imaging, and decreased rates of revision surgery. For now, the authors simply conclude that use of intraoperative CT-IGN is safe and accurate.

Free access

J. Patrick Johnson, Doniel Drazin, Wesley A. King and Terrence T. Kim

Object

Video-assisted thoracoscopic surgery (VATS) has evolved for treatment of a variety of spinal disorders. Early incorporation with image-guided surgery (IGS) was challenged due to reproducibility and adaptability, limiting the procedure's acceptance. In the present study, the authors report their experience with second-generation IGS and VATS technologies for anterior thoracic minimally invasive spinal (MIS) procedures.

Methods

The surgical procedure is described in detail including operating room set-up, patient positioning (a lateral decubitus position), placement of the spinal reference frame and portal, radiographic localization, registration, surgical instruments, and the image-guided thoracoscopic discectomy.

Results

Combined IGS and VATS procedures were successfully performed and assisted in anatomical localization in 14 patients. The mean patient age was 59 years (range 32–73 years). Disc herniation pathology represented the most common indication for surgery (n = 8 patients); intrathoracic spinal tumors were present in 4 patients and the remaining patients had infection and ossification of the posterior longitudinal ligament. All patients required chest tube drainage postoperatively, and all but 1 patient had drainage discontinued the following day. The only complication was a seroma that was presumed to be due to steroid therapy for postoperative weakness. At the final follow-up, 11 of the patients were improved neurologically, 2 patients had baseline neurological status, and the 1 patient with postoperative weakness was able to ambulate, albeit with an assistive device.

The evolution of thoracoscopic surgical procedures occurring over 20 years is presented, including their limitations. The combination of VATS and IGS technologies is discussed including their safety and the importance of 3D imaging. In cases of large open thoracotomy procedures, surgeries require difficult, extensive, and invasive access through the chest cavity; using a MIS procedure can potentially eliminate many of the complications and morbidities associated with large open procedures. The authors report their experience with thoracic spinal surgeries that involved MIS procedures and the new technologies.

Conclusions

The most significant advance in IGS procedures has resulted from intraoperative CT scanning and automatic registration with the IGS workstation. Image guidance can be used in conjunction with VATS techniques for thoracic discectomy, spinal tumors, infection, and ossification of the posterior longitudinal ligament. The authors' initial experience has revealed this technique to be useful and potentially applicable to other MIS procedures.

Free access

Sunil Jeswani, Doniel Drazin, Joseph C. Hsieh, Faris Shweikeh, Eric Friedman, Robert Pashman, J. Patrick Johnson and Terrence T. Kim

Object

Traditionally, instrumentation of thoracic pedicles has been more difficult because of their relatively smaller size. Thoracic pedicles are at risk for violation during surgical instrumentation, as is commonly seen in patients with scoliosis and in women. The laterally based “in-out-in” approach, which technically results in a lateral breach, is sometimes used in small pedicles to decrease the comparative risk of a medial breach with neurological involvement. In this study the authors evaluated the role of CT image–guided surgery in navigating screws in small thoracic pedicles.

Methods

Thoracic (T1–12) pedicle screw placements using the O-arm imaging system (Medtronic Inc.) were evaluated for accuracy with preoperative and postoperative CT. “Small” pedicles were defined as those ≤ 3 mm in the narrowest diameter orthogonal to the long axis of the pedicle on a trajectory entering the vertebral body on preinstrumentation CT. A subset of “very small” pedicles (≤ 2 mm in the narrowest diameter, 13 pedicles) was also analyzed. Screw accuracy was categorized as good (< 1 mm of pedicle breach in any direction or in-out-in screws), fair (1–3 mm of breach), or poor (> 3 mm of breach).

Results

Twenty-one consecutive patients (age range 32–71 years) had large (45 screws) and small (52 screws) thoracic pedicles. The median pedicle diameter was 2.5 mm (range 0.9–3 mm) for small and 3.9 mm (3.1–6.7 mm) for large pedicles. Computed tomography–guided surgical navigation led to accurate screw placement in both small (good 100%, fair 0%, poor 0%) and large (good 96.6%, fair 0%, poor 3.4%) pedicles. Good screw placement in very small or small pedicles occurred with an in-out-in trajectory more often than in large pedicles (large 6.8% vs small 36.5%, p < 0.0005; vs very small 69.2%, p < 0.0001). There were no medial breaches even though 75 of the 97 screws were placed in postmenopausal women, traditionally at higher risk for osteoporosis.

Conclusions

Computed tomography–guided surgical navigation allows for safe, effective, and accurate instrumentation of small (≤ 3 mm) to very small (≤ 2 mm) thoracic pedicles.

Free access

Doniel Drazin, Terrence T. Kim, David W. Polly Jr and J. Patrick Johnson

Image-guided surgery (IGS) has been evolving since the early 1990s and is now used on a daily basis in the operating theater for spine surgery at many institutions. In the last 5 years, spinal IGS has greatly benefitted from important enhancements including portable intraoperative CT (iCT) coupled with high-speed computerized stereotactic navigation systems and optical-based camera tracking technology.

Free access

Faris Shweikeh, Jordan P. Amadio, Monica Arnell, Zachary R. Barnard, Terrence T. Kim, J. Patrick Johnson and Doniel Drazin

Object

Robotics in the operating room has shown great use and versatility in multiple surgical fields. Robot-assisted spine surgery has gained significant favor over its relatively short existence, due to its intuitive promise of higher surgical accuracy and better outcomes with fewer complications. Here, the authors analyze the existing literature on this growing technology in the era of minimally invasive spine surgery.

Methods

In an attempt to provide the most recent, up-to-date review of the current literature on robotic spine surgery, a search of the existing literature was conducted to obtain all relevant studies on robotics as it relates to its application in spine surgery and other interventions.

Results

In all, 45 articles were included in the analysis. The authors discuss the current status of this technology and its potential in multiple arenas of spinal interventions, mainly spine surgery and spine biomechanics testing.

Conclusions

There are numerous potential advantages and limitations to robotic spine surgery, as suggested in published case reports and in retrospective and prospective studies. Randomized controlled trials are few in number and show conflicting results regarding accuracy. The present limitations may be surmountable with future technological improvements, greater surgeon experience, reduced cost, improved operating room dynamics, and more training of surgical team members. Given the promise of robotics for improvements in spine surgery and spine biomechanics testing, more studies are needed to further explore the applicability of this technology in the spinal operating room. Due to the significant cost of the robotic equipment, studies are needed to substantiate that the increased equipment costs will result in significant benefits that will justify the expense.

Restricted access

Wouter I. Schievink, Ray M. Chu, M. Marcel Maya, J. Patrick Johnson and Hart C. M. Cohen

Object

The goal of the study was to elucidate the spinal manifestations of spontaneous intracranial hypotension.

Methods

The authors reviewed the medical records and imaging studies of 338 consecutive patients with spontaneous intracranial hypotension who were evaluated at their institution between 2001 and 2010.

Results

Twenty patients (6%; mean age 35.8 [range 16 to 60 years]; 5 males and 15 females) had convincing signs or symptoms referable to the spinal cord or spinal nerve roots. The spinal manifestations consisted of radiculopathy in 11 patients (unilateral in 8 and bilateral in 3), myelopathy in 8 patients, and bibrachial amyotrophy in 1 patient. The cervical spine was involved in 12 patients, the thoracic spine in 5, and the lumbosacral spine in 3. The spinal symptoms were positional in only 3 patients. The spinal manifestations occurred around the time of the headache onset in 16 patients, and months to years after the positional headache had resolved in 4 patients. A large extrathecal CSF collection causing compression of the spinal cord or nerve root was responsible for the spinal manifestations in the majority of patients. Treatment of the spinal CSF leak resulted in resolution of the spinal manifestations along with the headache, except for those in the patient with bibrachial amyotrophy.

Conclusions

Spinal manifestations are uncommon in cases of spontaneous intracranial hypotension, occurring in about 6% of patients, but myelopathy and radiculopathy involving all spinal segments do occur. Unlike the headache, the spinal manifestations usually are not positional and are caused by mass effect from an extradural CSF collection.

Full access

Doniel Drazin, Ali Shirzadi, Sunil Jeswani, Harry Ching, Jack Rosner, Alexandre Rasouli, Terrence Kim, Robert Pashman and J. Patrick Johnson

Object

Athletes present with back pain as a common symptom. Various sports involve repetitive hyperextension of the spine along with axial loading and appear to predispose athletes to the spinal pathology spondylolysis. Many athletes with acute back pain require nonsurgical treatment methods; however, persistent recurrent back pain may indicate degenerative disc disease or spondylolysis. Young athletes have a greater incidence of spondylolysis. Surgical solutions are many, and yet there are relatively few data in the literature on both the techniques and outcomes of spondylolytic repair in athletes. In this study, the authors undertook a review of the surgical techniques and outcomes in the treatment of symptomatic spondylolysis in athletes.

Methods

A systematic review of the MEDLINE and PubMed databases was performed using the following key words to identify articles published between 1950 and 2011: “spondylolysis,” “pars fracture,” “repair,” “athlete,” and/or “sport.” Papers on both athletes and nonathletes were included in the review. Articles were read for data on methodology (retrospective vs prospective), type of treatment, number of patients, mean patient age, and mean follow-up.

Results

Eighteen articles were included in the review. Eighty-four athletes and 279 nonathletes with a mean age of 20 and 21 years, respectively, composed the population under review. Most of the fractures occurred at L-5 in both patient groups, specifically 96% and 92%, respectively. The average follow-up period was 26 months for athletes and 86 months for nonathletes. According to the modified Henderson criteria, 84% (71 of 84) of the athletes returned to their sports activities. The time intervals until their return ranged from 5 to 12 months.

Conclusions

For a young athlete with a symptomatic pars defect, any of the described techniques of repair would probably produce acceptable results. An appropriate preoperative workup is important. The ideal candidate is younger than 20 years with minimal or no listhesis and no degenerative changes of the disc. Limited participation in sports can be expected from 5 to 12 months postoperatively.

Restricted access

Srinath Samudrala, Shoshanna Vaynman, Ty Thiayananthan, Samer Ghostine, Darren L. Bergey, Neel Anand, Robert S. Pashman and J. Patrick Johnson

Object

Sagittal plane deformities can be subdivided into kyphotic and lordotic forms and further characterized according to their global or regional (focal) presentation. Regional deformities of a significant magnitude constitute a gibbous deformity. Pedicle subtraction osteotomy (PSO) and interlaminar Smith-Petersen osteotomies have been used to correct sagittal plane deformities in the cervical, thoracic, and lumbar spine. By resecting a portion of the vertebral body and closing in the gap of this vertebra, the spine is placed in local lordosis and kyphosis is corrected. These osteotomies have generally been carried out in the lumbar or less frequently in the thoracic area. While PSO has been performed in the mid and lower thoracic spine, there have been no case series of patients undergoing PSO at the CTJ. Specifically, a PSO approach that addresses the challenges of the CTJ is needed. Here, the authors review their case series of PSOs performed in the CTJ. Their goal in the treatment of these patients was to correct the regional CTJ kyphosis, restore forward gaze, and reduce the pain associated with the deformity.

Methods

Eight patients (5 males and 3 females, mean age 63 years) underwent PSO for the correction of CTJ kyphosis. Pedicle subtraction osteotomy was performed at C-7 or the upper thoracic vertebrae and was facilitated by a computer-guided intraoperative monitoring system. Surgical indications included postlaminectomy kyphosis, spinal cord tumor resection, posttraumatic kyphosis, and degenerative cervical spondylosis.

Results

The mean follow-up was 15.3 months (range 12–20 months), and the mean preoperative CTJ kyphosis was 38.67° (range 25°–60°). Clinically satisfactory correction of the regional deformity was accomplished in all patients, achieving a mean correction of 35.63° (range 15°–66°) at the CTJ, with restoration of forward gaze and significant reduction in pain.

Conclusions

A CTJ deformity is a distinctive form of kyphosis that presents as a variable local deformity and requires complex spinal reconstructive techniques to restore sagittal balance and forward gaze. Pedicle subtraction osteotomy allows for significant correction through one spinal segment, and it can be used safely to correct the regional sagittal alignment of the cervical spine and head in relation to the pelvis. Pedicle subtraction osteotomy can be used alone or in combination with other techniques as some patients may require multistage procedures with anterior and posterior spinal reconstruction to obtain stable sagittal correction. All deformities in these patients were kyphotic in nature with only mild elements of scoliosis or coronal plane deformity. This is unlike lumbar and thoracic curves where the kyphosis is frequently associated with scoliosis.

Full access

Matthew L. Mundwiler, Khawar Siddique, Jeffrey M. Dym, Brian Perri, J. Patrick Johnson and Michael H. Weisman

✓ Ankylosing spondylitis (AS) is a systemic inflammatory disorder with frequent spinal axis symptoms. In this paper, the authors explored the spinal manifestations of AS and its characteristic anatomical lesions, radiological findings, and complications. They also offer a comprehensive report of the medical and surgical treatments with a focus on deformity correction.

Restricted access

Robert L. Tiel and David G. Kline