Browse

You are looking at 1 - 6 of 6 items for

  • By Author: Hart, Robert x
  • By Author: Fu, Kai-Ming G. x
Clear All
Free access

Christopher P. Ames, Justin S. Smith, Robert Eastlack, Donald J. Blaskiewicz, Christopher I. Shaffrey, Frank Schwab, Shay Bess, Han Jo Kim, Gregory M. Mundis Jr., Eric Klineberg, Munish Gupta, Michael O’Brien, Richard Hostin, Justin K. Scheer, Themistocles S. Protopsaltis, Kai-Ming G. Fu, Robert Hart, Todd J. Albert, K. Daniel Riew, Michael G. Fehlings, Vedat Deviren, Virginie Lafage and International Spine Study Group

OBJECT

Despite the complexity of cervical spine deformity (CSD) and its significant impact on patient quality of life, there exists no comprehensive classification system. The objective of this study was to develop a novel classification system based on a modified Delphi approach and to characterize the intra- and interobserver reliability of this classification.

METHODS

Based on an extensive literature review and a modified Delphi approach with an expert panel, a CSD classification system was generated. The classification system included a deformity descriptor and 5 modifiers that incorporated sagittal, regional, and global spinopelvic alignment and neurological status. The descriptors included: “C,” “CT,” and “T” for primary cervical kyphotic deformities with an apex in the cervical spine, cervicothoracic junction, or thoracic spine, respectively; “S” for primary coronal deformity with a coronal Cobb angle ≥ 15°; and “CVJ” for primary craniovertebral junction deformity. The modifiers included C2–7 sagittal vertical axis (SVA), horizontal gaze (chin-brow to vertical angle [CBVA]), T1 slope (TS) minus C2–7 lordosis (TS–CL), myelopathy (modified Japanese Orthopaedic Association [mJOA] scale score), and the Scoliosis Research Society (SRS)-Schwab classification for thoracolumbar deformity. Application of the classification system requires the following: 1) full-length standing posteroanterior (PA) and lateral spine radiographs that include the cervical spine and femoral heads; 2) standing PA and lateral cervical spine radiographs; 3) completed and scored mJOA questionnaire; and 4) a clinical photograph or radiograph that includes the skull for measurement of the CBVA. A series of 10 CSD cases, broadly representative of the classification system, were selected and sufficient radiographic and clinical history to enable classification were assembled. A panel of spinal deformity surgeons was queried to classify each case twice, with a minimum of 1 intervening week. Inter- and intrarater reliability measures were based on calculations of Fleiss k coefficient values.

RESULTS

Twenty spinal deformity surgeons participated in this study. Interrater reliability (Fleiss k coefficients) for the deformity descriptor rounds 1 and 2 were 0.489 and 0.280, respectively, and mean intrarater reliability was 0.584. For the modifiers, including the SRS-Schwab components, the interrater (round 1/round 2) and intrarater reliabilities (Fleiss k coefficients) were: C2–7 SVA (0.338/0.412, 0.584), horizontal gaze (0.779/0.430, 0.768), TS-CL (0.721/0.567, 0.720), myelopathy (0.602/0.477, 0.746), SRS-Schwab curve type (0.590/0.433, 0.564), pelvic incidence-lumbar lordosis (0.554/0.386, 0.826), pelvic tilt (0.714/0.627, 0.633), and C7-S1 SVA (0.071/0.064, 0.233), respectively. The parameter with the poorest reliability was the C7–S1 SVA, which may have resulted from differences in interpretation of positive and negative measurements.

CONCLUSIONS

The proposed classification provides a mechanism to assess CSD within the framework of global spinopelvic malalignment and clinically relevant parameters. The intra- and interobserver reliabilities suggest moderate agreement and serve as the basis for subsequent improvement and study of the proposed classification.

Full access

Justin S. Smith, Ellen Shaffrey, Eric Klineberg, Christopher I. Shaffrey, Virginie Lafage, Frank J. Schwab, Themistocles Protopsaltis, Justin K. Scheer, Gregory M. Mundis Jr., Kai-Ming G. Fu, Munish C. Gupta, Richard Hostin, Vedat Deviren, Khaled Kebaish, Robert Hart, Douglas C. Burton, Breton Line, Shay Bess, Christopher P. Ames and The International Spine Study Group

Object

Improved understanding of rod fracture (RF) following adult spinal deformity (ASD) surgery could prove valuable for surgical planning, patient counseling, and implant design. The objective of this study was to prospectively assess the rates of and risk factors for RF following surgery for ASD.

Methods

This was a prospective, multicenter, consecutive series. Inclusion criteria were ASD, age > 18 years, ≥5 levels posterior instrumented fusion, baseline full-length standing spine radiographs, and either development of RF or full-length standing spine radiographs obtained at least 1 year after surgery that demonstrated lack of RF. ASD was defined as presence of at least one of the following: coronal Cobb angle ≥20°, sagittal vertical axis (SVA) ≥5 cm, pelvic tilt (PT) ≥25°, and thoracic kyphosis ≥60°.

Results

Of 287 patients who otherwise met inclusion criteria, 200 (70%) either demonstrated RF or had radiographic imaging obtained at a minimum of 1 year after surgery showing lack of RF. The patients' mean age was 54.8 ± 15.8 years; 81% were women; 10% were smokers; the mean body mass index (BMI) was 27.1 ± 6.5; the mean number of levels fused was 12.0 ± 3.8; and 50 patients (25%) had a pedicle subtraction osteotomy (PSO). The rod material was cobalt chromium (CC) in 53%, stainless steel (SS), in 26%, or titanium alloy (TA) in 21% of cases; the rod diameters were 5.5 mm (in 68% of cases), 6.0 mm (in 13%), or 6.35 mm (in 19%). RF occurred in 18 cases (9.0%) at a mean of 14.7 months (range 3–27 months); patients without RF had a mean follow-up of 19 months (range 12–24 months). Patients with RF were older (62.3 vs 54.1 years, p = 0.036), had greater BMI (30.6 vs 26.7, p = 0.019), had greater baseline sagittal malalignment (SVA 11.8 vs 5.0 cm, p = 0.001; PT 29.1° vs 21.9°, p = 0.016; and pelvic incidence [PI]–lumbar lordosis [LL] mismatch 29.6° vs 12.0°, p = 0.002), and had greater sagittal alignment correction following surgery (SVA reduction by 9.6 vs 2.8 cm, p < 0.001; and PI-LL mismatch reduction by 26.3° vs 10.9°, p = 0.003). RF occurred in 22.0% of patients with PSO (10 of the 11 fractures occurred adjacent to the PSO level), with rates ranging from 10.0% to 31.6% across centers. CC rods were used in 68% of PSO cases, including all with RF. Smoking, levels fused, and rod diameter did not differ significantly between patients with and without RF (p > 0.05). In cases including a PSO, the rate of RF was significantly higher with CC rods than with TA or SS rods (33% vs 0%, p = 0.010). On multivariate analysis, only PSO was associated with RF (p = 0.001, OR 5.76, 95% CI 2.01–15.8).

Conclusions

Rod fracture occurred in 9.0% of ASD patients and in 22.0% of PSO patients with a minimum of 1-year follow-up. With further follow-up these rates would likely be even higher. There was a substantial range in the rate of RF with PSO across centers, suggesting potential variations in technique that warrant future investigation. Due to higher rates of RF with PSO, alternative instrumentation strategies should be considered for these cases.