Browse

You are looking at 1 - 10 of 18 items for

  • By Author: Hamilton, Mark G. x
Clear All
Free access

Mark G. Hamilton, Ian Parney, Odette A. Harris, Eric A. Schmidt and Howard A. Riina

Restricted access

Michael B. Keough, Albert M. Isaacs, Geberth Urbaneja, Jarred Dronyk, Andrew P. Lapointe and Mark G. Hamilton

OBJECTIVE

Acute low-pressure hydrocephalus (ALPH) is characterized by clinical manifestations of an apparent raised intracranial pressure (ICP) and ventriculomegaly despite measured ICP that is below the expected range (i.e., typically ≤ 5 cm H2O). ALPH is often refractory to standard hydrocephalus intervention protocols and the ICP paradox commonly leads to delayed diagnosis. The aim of this study was to characterize ALPH and develop an algorithm to facilitate diagnosis and management for patients with ALPH.

METHODS

EMBASE, MEDLINE, and Google Scholar databases were searched for ALPH cases from its first description in 1994 until 2019. Cases that met inclusion criteria were pooled with cases managed at the authors’ institution. Patient characteristics, presenting signs/symptoms, precipitating factors, temporizing interventions, definitive treatment, and patient outcomes were recorded.

RESULTS

There were 195 patients identified, with 42 local and 153 from the literature review (53 pediatric patients and 142 adults). Decreased level of consciousness was the predominant clinical sign. The most common etiologies of hydrocephalus were neoplasm and hemorrhage. While the majority of ALPH occurred spontaneously, 39% of pediatric patients had previously undergone a lumbar puncture. Prior to ALPH diagnosis, 92% of pediatric and 39% of adult patients had a ventricular shunt in situ. The most common temporizing intervention was subatmospheric CSF drainage. The majority of patients underwent a shunt insertion/revision or endoscopic third ventriculostomy as definitive ALPH treatment. Although the mortality rate was 11%, 83% of pediatric and 49% of adult patients returned to their pre-ALPH neurological functional status after definitive treatment. Outcomes were related to both the severity of the underlying neurosurgical disease causing the hydrocephalus and the efficacy of ALPH treatment.

CONCLUSIONS

ALPH is an underrecognized variant phenotype of hydrocephalus that is associated with multiple etiologies and can be challenging to treat as it frequently does not initially respond to standard strategies of CSF shunting. With early recognition, ALPH can be effectively managed. A management algorithm is provided as a guide for this purpose.

Free access

Sepideh Amin-Hanjani, Nicholas C. Bambakidis, Fred G. Barker II, Bob S Carter, Kevin M. Cockroft, Rose Du, Justin F. Fraser, Mark G. Hamilton, Judy Huang, John A. Jane Jr., Randy L. Jensen, Michael G. Kaplitt, Anthony M. Kaufmann, Julie G. Pilitsis, Howard A. Riina, Michael Schulder, Michael A. Vogelbaum, Lynda J. S. Yang and Gabriel Zada

Restricted access

Brandon G. Rocque, Bradley E. Weprin, Jeffrey P. Blount, Betsy D. Hopson, James M. Drake, Mark G. Hamilton, Michael A. Williams, Patience H. White, Katie O. Orrico and Jonathan E. Martin

OBJECTIVE

The number of children with complex medical conditions surviving to adulthood is increasing. A planned transition to adult care systems is essential to the health maintenance of these patients. Guidance has been established for the general health care transition (HCT) from adolescence to adulthood. No formal assessment of the performance of pediatric neurosurgeons in HCT has been previously performed. No “best practice” for this process in pediatric neurosurgery currently exists. The authors pursued two goals in this paper: 1) define the current state of HCT in pediatric neurosurgery through a survey of the membership of the American Society of Pediatric Neurosurgeons (ASPN) on current methods of HCT, and 2) develop leadership-endorsed best-practice guidelines for HCT from pediatric to adult neurosurgical health care.

METHODS

Completion of the Current Assessment of Health Care Transition Activities survey was requested of 178 North American pediatric neurosurgeons by using a web-based questionnaire to capture HCT practices of the ASPN membership. The authors concurrently conducted a PubMed/MEDLINE–based literature review of HCT for young adults with special health care needs, surgical conditions, and/or neurological conditions for the period from 1990 to 2018. Selected articles were assembled and reviewed by subject matter experts and members of the ASPN Quality, Safety, and Advocacy Committee. Best-practice recommendations were developed and subjected to peer review by external expert groups.

RESULTS

Seventy-six responses to the survey (43%) were received, and 62 respondents (82%) answered all 12 questions. Scores of 1 (lowest possible score) were recorded by nearly 60% of respondents on transition policy, by almost 70% on transition tracking, by 85% on transition readiness, by at least 40% on transition planning as well as transfer of care, and by 53% on transition completion. Average responses on all core elements were < 2 on the established 4-point scale. Seven best-practice recommendations were developed and endorsed by the ASPN leadership.

CONCLUSIONS

The majority of pediatric neurosurgeons have transition practices that are poor, do not meet the needs of patients and families, and should be improved. A structured approach to transition, local engagement with adult neurosurgical providers, and national partnerships between pediatric and adult neurosurgery organizations are suggested to address current gaps in HCT for patients served by pediatric neurosurgeons.

Restricted access

Michael A. Williams, Sean J. Nagel, Mark G. Luciano, Norman Relkin, Thomas J. Zwimpfer, Heather Katzen, Richard Holubkov, Abhay Moghekar, Jeffrey H. Wisoff, Guy M. McKhann II, James Golomb, Richard J. Edwards and Mark G. Hamilton

OBJECTIVE

The authors describe the demographics and clinical characteristics of the first 517 patients enrolled in the Adult Hydrocephalus Clinical Research Network (AHCRN) during its first 2 years.

METHODS

Adults ≥ 18 years were nonconsecutively enrolled in a registry at 6 centers. Four categories of adult hydrocephalus were defined: transition (treated before age 18 years), unrecognized congenital (congenital pattern, not treated before age 18 years), acquired (secondary to known risk factors, treated or untreated), and suspected idiopathic normal pressure hydrocephalus (iNPH) (≥ age 65 years, not previously treated). Data include etiology, symptoms, examination findings, neuropsychology screening, comorbidities, treatment, complications, and outcomes. Standard evaluations were administered to all patients by trained examiners, including the Montreal Cognitive Assessment, the Symbol Digit Modalities Test, the Beck Depression Inventory–II, the Overactive Bladder Questionnaire Short Form symptom bother, the 10-Meter Walk Test, the Boon iNPH gait scale, the Lawton Activities of Daily Living/Instrumental Activities of Daily Living (ADL/IADL) questionnaire, the iNPH grading scale, and the modified Rankin Scale.

RESULTS

Overall, 517 individuals were enrolled. Age ranged from 18.1 to 90.7 years, with patients in the transition group (32.7 ± 10.0 years) being the youngest and those in the suspected iNPH group (76.5 ± 5.2 years) being the oldest. The proportion of patients in each group was as follows: 16.6% transition, 26.5% unrecognized congenital, 18.2% acquired, and 38.7% suspected iNPH. Excluding the 86 patients in the transition group, who all had received treatment, 79.4% of adults in the remaining 3 groups had not been treated at the time of enrollment. Patients in the suspected iNPH group had the poorest performance in cognitive evaluations, and those in the unrecognized congenital group had the best performance. The same pattern was seen in the Lawton ADL/IADL scores. Gait velocity was lowest in patients in the suspected iNPH group. Categories that had the most comorbidities (suspected iNPH) or etiologies of hydrocephalus that directly cause neurological injury (transition, acquired) had greater degrees of impairment compared to unrecognized congenital, which had the fewest comorbidities or etiologies associated with neurological injury.

CONCLUSIONS

The clinical spectrum of hydrocephalus in adults comprises more than iNPH or acquired hydrocephalus. Only 39% of patients had suspected iNPH, whereas 43% had childhood onset (i.e., those in the transition and unrecognized congenital groups). The severity of symptoms and impairment was worsened when the etiology of the hydrocephalus or complications of treatment caused additional neurological injury or when multiple comorbidities were present. However, more than half of patients in the transition, unrecognized congenital, and acquired hydrocephalus groups had minimal or no impairment. Excluding the transition group, nearly 80% of patients in the AHCRN registry were untreated at the time of enrollment. A future goal for the AHCRN is to determine whether patients with unrecognized congenital and acquired hydrocephalus need treatment and which patients in the suspected iNPH cohort actually have possible hydrocephalus and should undergo further diagnostic testing. Future prospective research is needed in the diagnosis, treatment, outcomes, quality of life, and macroeconomics of all categories of adult hydrocephalus.

Free access

Michael A. Williams, Tessa van der Willigen, Patience H. White, Cathy C. Cartwright, David L. Wood and Mark G. Hamilton

The health care needs of children with hydrocephalus continue beyond childhood and adolescence; however, pediatric hospitals and pediatric neurosurgeons are often unable to provide them care after they become adults. Each year in the US, an estimated 5000–6000 adolescents and young adults (collectively, youth) with hydrocephalus must move to the adult health care system, a process known as health care transition (HCT), for which many are not prepared. Many discover that they cannot find neurosurgeons to care for them. A significant gap in health care services exists for young adults with hydrocephalus. To address these issues, the Hydrocephalus Association convened a Transition Summit in Seattle, Washington, February 17–18, 2017.

The Hydrocephalus Association surveyed youth and families in focus groups to identify common concerns with HCT that were used to identify topics for the summit. Seven plenary sessions consisted of formal presentations. Four breakout groups identified key priorities and recommended actions regarding HCT models and practices, to prepare and engage patients, educate health care professionals, and address payment issues. The breakout group results were discussed by all participants to generate consensus recommendations.

Barriers to effective HCT included difficulty finding adult neurosurgeons to accept young adults with hydrocephalus into their practices; unfamiliarity of neurologists, primary care providers, and other health care professionals with the principles of care for patients with hydrocephalus; insufficient infrastructure and processes to provide effective HCT for youth, and longitudinal care for adults with hydrocephalus; and inadequate compensation for health care services.

Best practices were identified, including the National Center for Health Care Transition Improvement’s “Six Core Elements of Health Care Transition 2.0”; development of hydrocephalus-specific transition programs or incorporation of hydrocephalus into existing general HCT programs; and development of specialty centers for longitudinal care of adults with hydrocephalus.

The lack of formal HCT and longitudinal care for young adults with hydrocephalus is a significant health care services problem in the US and Canada that professional societies in neurosurgery and neurology must address. Consensus recommendations of the Hydrocephalus Association Transition Summit address 1) actions by hospitals, health systems, and practices to meet local community needs to improve processes and infrastructure for HCT services and longitudinal care; and 2) actions by professional societies in adult and pediatric neurosurgery and neurology to meet national needs to improve processes and infrastructure for HCT services; to improve training in medical and surgical management of hydrocephalus and in HCT and longitudinal care; and to demonstrate the outcomes and effectiveness of HCT and longitudinal care by promoting research funding.

Free access

Albert M. Isaacs, Yarema B. Bezchlibnyk, Heather Yong, Dilip Koshy, Geberth Urbaneja, Walter J. Hader and Mark G. Hamilton

OBJECTIVE

The efficacy of endoscopic third ventriculostomy (ETV) for the treatment of pediatric hydrocephalus has been extensively reported in the literature. However, ETV-related long-term outcome data are lacking for the adult hydrocephalus population. The objective of the present study was to assess the role of ETV as a primary or secondary treatment for hydrocephalus in adults.

METHODS

The authors performed a retrospective chart review of all adult patients (age ≥ 18 years) with symptomatic hydrocephalus treated with ETV in Calgary, Canada, over a span of 20 years (1994–2014). Patients were dichotomized into a primary or secondary ETV cohort based on whether ETV was the initial treatment modality for the hydrocephalus or if other CSF diversion procedures had been previously attempted respectively. Primary outcomes were subjective patient-reported clinical improvement within 12 weeks of surgery and the need for any CSF diversion procedures after the initial ETV during the span of the study. Categorical and actuarial data analysis was done to compare the outcomes of the primary versus secondary ETV cohorts.

RESULTS

A total of 163 adult patients with symptomatic hydrocephalus treated with ETV were identified and followed over an average of 98.6 months (range 0.1–230.4 months). All patients presented with signs of intracranial hypertension or other neurological symptoms. The primary ETV group consisted of 112 patients, and the secondary ETV consisted of 51 patients who presented with failed ventriculoperitoneal (VP) shunts. After the initial ETV procedure, clinical improvement was reported more frequently by patients in the primary cohort (87%) relative to those in the secondary ETV cohort (65%, p = 0.001). Additionally, patients in the primary ETV group required fewer reoperations (p < 0.001), with cumulative ETV survival time favoring this primary ETV cohort over the course of the follow-up period (p < 0.001). Fifteen patients required repeat ETV, with all but one experiencing successful relief of symptoms. Patients in the secondary ETV cohort also had a higher incidence of complications, with one occurring in 8 patients (16%) compared with 2 in the primary ETV group (2%; p = 0.010), although most complications were minor.

CONCLUSIONS

ETV is an effective long-term treatment for selected adult patients with hydrocephalus. The overall ETV success rate when it was the primary treatment modality for adult hydrocephalus was approximately 87%, and 99% of patients experience symptomatic improvement after 2 ETVs. Patients in whom VP shunt surgery fails prior to an ETV have a 22% relative risk of ETV failure and an almost eightfold complication rate, although mostly minor, when compared with patients who undergo a primary ETV. Most ETV failures occur within the first 7 months of surgery in patients treated with primary ETV, but the time to failure is more prolonged in patients who present with failed previous shunts.

Restricted access

Ron Levy, Robin G. Cox, Walter J. Hader, Terry Myles, Garnette R. Sutherland and Mark G. Hamilton

Object

Over the past decade, the use of intraoperative MR (iMR) imaging in the pediatric neurosurgical population has become increasingly accepted as an innovative and important neurosurgical tool. The authors summarize their experience using a mobile 1.5-T iMR imaging unit with integrated neuronavigation with the goal of identifying procedures and/or pathologies in which the application of this technology changed the course of surgery or modified the operative strategy.

Methods

A database has been prospectively maintained for this patient population. The authors reviewed the hospital charts and imaging results for all patients in the database. This review revealed 105 neurosurgical procedures performed in 98 children (49 male and 49 female) between March 1998 and April 2008. Intradissection (ID) and/or quality assurance images were obtained at the discretion of the surgeon.

Results

The median age at surgery was 12 years (4 months–18 years). One hundred intracranial and 5 spinal procedures were performed; 22 of these procedures were performed for recurrent pathology. Surgical planning scans were obtained for 102 procedures, and neuronavigation was used in 93 patients. The greatest impact of iMR imaging was apparent in the 55 procedures to resect neoplastic lesions; ID scans were obtained in 49 of these procedures. Further surgery was performed in 49% of the procedures during which ID scans had been obtained. A smaller proportion of ID scans in the different cranial pathology groups (5 of 21 epilepsy cases, 4 of 9 vascular cases) resulted in further resections to meet the surgical goal of the surgeon. Two ID scans obtained during 5 procedures for the treatment of spinal disease did not lead to any change in surgery. Postoperative scans did not reveal any acute adverse events. There was 1 intraoperative adverse event in which a Greenberg retractor was inadvertently left on during ID scanning but was removed after the scout scans.

Conclusions

The application of iMR imaging in the pediatric neurosurgical population allows, at minimum, the opportunity to perform less invasive surgical exposures. Its potential is greatest when its high-quality imaging ability is coupled with its superior neuronavigation capabilities, which permits tracking of the extent of resection of intracranial tumors and, to a lesser extent, other lesions during the surgical procedure.

Restricted access

Editorial

Intraoperative magnetic resonance imaging

Mark M. Souweidane