Browse

You are looking at 1 - 6 of 6 items for

  • By Author: Gokaslan, Ziya L. x
  • By Author: Baaj, Ali A. x
Clear All
Free access

Ziev B. Moses, Rory R. Mayer, Benjamin A. Strickland, Ryan M. Kretzer, Jean-Paul Wolinsky, Ziya L. Gokaslan and Ali A. Baaj

Object

Parallel advancements in image guidance technology and minimal access techniques continue to push the frontiers of minimally invasive spine surgery (MISS). While traditional intraoperative imaging remains widely used, newer platforms, such as 3D-fluoroscopy, cone-beam CT, and intraoperative CT/MRI, have enabled safer, more accurate instrumentation placement with less radiation exposure to the surgeon. The goal of this work is to provide a review of the current uses of advanced image guidance in MISS.

Methods

The authors searched PubMed for relevant articles concerning MISS, with particular attention to the use of image-guidance platforms. Pertinent studies published in English were further compiled and characterized into relevant analyses of MISS of the cervical, thoracic, and lumbosacral regions.

Results

Fifty-two studies were included for review. These describe the use of the iso-C system for 3D navigation during C1–2 transarticular screw placement, the use of endoscopic techniques in the cervical spine, and the role of navigation guidance at the occipital-cervical junction. The authors discuss the evolving literature concerning neuronavigation during pedicle screw placement in the thoracic and lumbar spine in the setting of infection, trauma, and deformity surgery and review the use of image guidance in transsacral approaches.

Conclusions

Refinements in image-guidance technologies and minimal access techniques have converged on spinal pathology, affording patients the ability to undergo safe, accurate operations without the associated morbidities of conventional approaches. While percutaneous transpedicular screw placement is among the most common procedures to benefit from navigation, other areas of spine surgery can benefit from advances in neuronavigation and further growth in the field of image-guided MISS is anticipated.

Restricted access

Kyriakos Papadimitriou, Anubhav G. Amin, Ryan M. Kretzer, Christopher Chaput, P. Justin Tortolani, Jean-Paul Wolinsky, Ziya L. Gokaslan and Ali A. Baaj

Object

The rib head is an important landmark in the anterolateral approach to the thoracic spine. Resection of the rib head is typically the first step in gaining access to the underlying pedicle and ultimately the spinal canal. The goal of this work is to quantify the relationship of the rib head to the spinal canal and adjacent aorta at each thoracic level using CT-based morphometric measurements.

Methods

One hundred thoracic spine CT scans (obtained in 50 male and 50 female subjects) were evaluated in this study. The width and depth of each vertebra body were measured from T-1 to T-12. In addition, the distance of each rib head to the spinal canal was determined by drawing a line connecting the rib heads bilaterally and measuring the distance to this line from the most ventral aspect of the spinal canal. Finally, the distance of the left rib head to the thoracic aorta was measured at each thoracic level below the aortic arch.

Results

The vertebral body depth progressively increased in a rostral to caudal direction. The vertebral body width was at its minimum at T-4 and progressively increased to T-12. The rib head extended beyond the spinal canal maximally at T-1. This distance incrementally decreased toward the caudal levels, with the tip of the rib head lying approximately even with the ventral canal at T-11 and T-12. The distance between the aorta and the left rib head increased in a rostral to caudal direction as well.

Conclusions

The rib head is an important landmark in the anterolateral approach to the thoracic spine. At more cephalad levels, a larger portion of rib head requires resection to gain access to the spinal canal. At more caudad levels, there is a safer working distance between the rib head and aorta.

Restricted access

Ali A. Baaj and Ziya L. Gokaslan