Browse

You are looking at 1 - 10 of 77 items for

  • By Author: Drake, James M. x
Clear All
Restricted access

Han Yan, Taylor J. Abel, Naif M. Alotaibi, Melanie Anderson, Toba N. Niazi, Alexander G. Weil, Aria Fallah, John H. Phillips, Christopher R. Forrest, Abhaya V. Kulkarni, James M. Drake and George M. Ibrahim

OBJECTIVE

In this systematic review and meta-analysis the authors aimed to directly compare open surgical and endoscope-assisted techniques for the treatment of sagittal craniosynostosis, focusing on the outcomes of blood loss, transfusion rate, length of stay, operating time, complication rate, cost, and cosmetic outcome.

METHODS

A literature search was performed in compliance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Relevant articles were identified from 3 electronic databases (MEDLINE, EMBASE, and CENTRAL [Cochrane Central Register of Controlled Trials]) from their inception to August 2017. The quality of methodology and bias risk were assessed using the Effective Public Health Practice Project Quality Assessment Tool for Quantitative Studies. Effect estimates between groups were calculated as standardized mean differences with 95% CIs. Random and fixed effects models were used to estimate the overall effect.

RESULTS

Of 316 screened records, 10 met the inclusion criteria, of which 3 were included in the meta-analysis. These studies reported on 303 patients treated endoscopically and 385 patients treated with open surgery. Endoscopic surgery was associated with lower estimated blood loss (p < 0.001), shorter length of stay (p < 0.001), and shorter operating time (p < 0.001). From the literature review of the 10 studies, transfusion rates for endoscopic procedures were consistently lower, with significant differences in 4 of 6 studies; the cost was lower, with differences ranging from $11,603 to $31,744 in 3 of 3 studies; and the cosmetic outcomes were equivocal (p > 0.05) in 3 of 3 studies. Finally, endoscopic techniques demonstrated complication rates similar to or lower than those of open surgery in 8 of 8 studies.

CONCLUSIONS

Endoscopic procedures are associated with lower estimated blood loss, operating time, and days in hospital. Future long-term prospective registries may establish advantages with respect to complications and cost, with equivalent cosmetic outcomes. Larger studies evaluating patient- or parent-reported satisfaction and optimal timing of intervention as well as heterogeneity in outcomes are indicated.

Restricted access

Han Yan, Taylor J. Abel, Naif M. Alotaibi, Melanie Anderson, Toba N. Niazi, Alexander G. Weil, Aria Fallah, John H. Phillips, Christopher R. Forrest, Abhaya V. Kulkarni, James M. Drake and George M. Ibrahim

OBJECTIVE

Despite increasing adoption of endoscopic techniques for repair of nonsagittal single-suture craniosynostosis, the efficacy and safety of the procedure relative to established open approaches are unknown. In this systematic review the authors aimed to directly compare open surgical and endoscope-assisted techniques for the treatment of metopic, unilateral coronal, and lambdoid craniosynostosis, with an emphasis on quantitative reported outcomes.

METHODS

A literature search was performed in compliance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Relevant articles were identified from 3 electronic databases (MEDLINE, EMBASE, and CENTRAL [Cochrane Central Register of Controlled Trials]) from their inception to August 2017. The quality of methodology and bias risk were assessed using the Effective Public Health Practice Project (EPHPP) Quality Assessment Tool for Quantitative Studies.

RESULTS

Of 316 screened records, 7 studies were included in a qualitative synthesis of the evidence, of which none were eligible for meta-analysis. These reported on 111 unique patients with metopic, 65 with unilateral coronal, and 12 with lambdoid craniosynostosis. For all suture types, 100 (53%) children underwent endoscope-assisted craniosynostosis surgery and 32 (47%) patients underwent open repair. These studies all suggest that blood loss, transfusion rate, operating time, and length of hospital stay were superior for endoscopically treated children. Although potentially comparable or better cosmetic outcomes are reported, the paucity of evidence and considerable variability in outcomes preclude meaningful conclusions.

CONCLUSIONS

Limited data comparing open and endoscopic treatments for metopic, unilateral coronal, and lambdoid synostosis suggest a benefit for endoscopic techniques with respect to blood loss, transfusion, length of stay, and operating time. This report highlights shortcomings in evidence and gaps in knowledge regarding endoscopic repair of nonsagittal single-suture craniosynostosis, emphasizing the need for further matched-control studies.

Restricted access

Kyle W. Eastwood, Vivek P. Bodani, Faizal A. Haji, Thomas Looi, Hani E. Naguib and James M. Drake

OBJECTIVE

Endoscope-assisted repair of craniosynostosis is a safe and efficacious alternative to open techniques. However, this procedure is challenging to learn, and there is significant variation in both its execution and outcomes. Surgical simulators may allow trainees to learn and practice this procedure prior to operating on an actual patient. The purpose of this study was to develop a realistic, relatively inexpensive simulator for endoscope-assisted repair of metopic and sagittal craniosynostosis and to evaluate the models’ fidelity and teaching content.

METHODS

Two separate, 3D-printed, plastic powder–based replica skulls exhibiting metopic (age 1 month) and sagittal (age 2 months) craniosynostosis were developed. These models were made into consumable skull “cartridges” that insert into a reusable base resembling an infant’s head. Each cartridge consists of a multilayer scalp (skin, subcutaneous fat, galea, and periosteum); cranial bones with accurate landmarks; and the dura mater. Data related to model construction, use, and cost were collected. Eleven novice surgeons (residents), 9 experienced surgeons (fellows), and 5 expert surgeons (attendings) performed a simulated metopic and sagittal craniosynostosis repair using a neuroendoscope, high-speed drill, rongeurs, lighted retractors, and suction/irrigation. All participants completed a 13-item questionnaire (using 5-point Likert scales) to rate the realism and utility of the models for teaching endoscope-assisted strip suturectomy.

RESULTS

The simulators are compact, robust, and relatively inexpensive. They can be rapidly reset for repeated use and contain a minimal amount of consumable material while providing a realistic simulation experience. More than 80% of participants agreed or strongly agreed that the models’ anatomical features, including surface anatomy, subgaleal and subperiosteal tissue planes, anterior fontanelle, and epidural spaces, were realistic and contained appropriate detail. More than 90% of participants indicated that handling the endoscope and the instruments was realistic, and also that the steps required to perform the procedure were representative of the steps required in real life.

CONCLUSIONS

Both the metopic and sagittal craniosynostosis simulators were developed using low-cost methods and were successfully designed to be reusable. The simulators were found to realistically represent the surgical procedure and can be used to develop the technical skills required for performing an endoscope-assisted craniosynostosis repair.

Full access

William E. Whitehead, Jay Riva-Cambrin, Abhaya V. Kulkarni, John C. Wellons III, Curtis J. Rozzelle, Mandeep S. Tamber, David D. Limbrick Jr., Samuel R. Browd, Robert P. Naftel, Chevis N. Shannon, Tamara D. Simon, Richard Holubkov, Anna Illner, D. Douglas Cochrane, James M. Drake, Thomas G. Luerssen, W. Jerry Oakes and John R. W. Kestle

OBJECTIVE

Accurate placement of ventricular catheters may result in prolonged shunt survival, but the best target for the hole-bearing segment of the catheter has not been rigorously defined. The goal of the study was to define a target within the ventricle with the lowest risk of shunt failure.

METHODS

Five catheter placement variables (ventricular catheter tip location, ventricular catheter tip environment, relationship to choroid plexus, catheter tip holes within ventricle, and crosses midline) were defined, assessed for interobserver agreement, and evaluated for their effect on shunt survival in univariate and multivariate analyses. De-identified subjects from the Shunt Design Trial, the Endoscopic Shunt Insertion Trial, and a Hydrocephalus Clinical Research Network study on ultrasound-guided catheter placement were combined (n = 858 subjects, all first-time shunt insertions, all patients < 18 years old). The first postoperative brain imaging study was used to determine ventricular catheter placement for each of the catheter placement variables.

RESULTS

Ventricular catheter tip location, environment, catheter tip holes within the ventricle, and crosses midline all achieved sufficient interobserver agreement (κ > 0.60). In the univariate survival analysis, however, only ventricular catheter tip location was useful in distinguishing a target within the ventricle with a survival advantage (frontal horn; log-rank, p = 0.0015). None of the other catheter placement variables yielded a significant survival advantage unless they were compared with catheter tips completely not in the ventricle. Cox regression analysis was performed, examining ventricular catheter tip location with age, etiology, surgeon, decade of surgery, and catheter entry site (anterior vs posterior). Only age (p < 0.001) and entry site (p = 0.005) were associated with shunt survival; ventricular catheter tip location was not (p = 0.37). Anterior entry site lowered the risk of shunt failure compared with posterior entry site by approximately one-third (HR 0.65, 95% CI 0.51–0.83).

CONCLUSIONS

This analysis failed to identify an ideal target within the ventricle for the ventricular catheter tip. Unexpectedly, the choice of an anterior versus posterior catheter entry site was more important in determining shunt survival than the location of the ventricular catheter tip within the ventricle. Entry site may represent a modifiable risk factor for shunt failure, but, due to inherent limitations in study design and previous clinical research on entry site, a randomized controlled trial is necessary before treatment recommendations can be made.

Full access

Abhaya V. Kulkarni, Jay Riva-Cambrin, Richard Holubkov, Samuel R. Browd, D. Douglas Cochrane, James M. Drake, David D. Limbrick, Curtis J. Rozzelle, Tamara D. Simon, Mandeep S. Tamber, John C. Wellons III, William E. Whitehead, John R. W. Kestle and for the Hydrocephalus Clinical Research Network

OBJECTIVE

Endoscopic third ventriculostomy (ETV) is now established as a viable treatment option for a subgroup of children with hydrocephalus. Here, the authors report prospective, multicenter results from the Hydrocephalus Clinical Research Network (HCRN) to provide the most accurate determination of morbidity, complication incidence, and efficacy of ETV in children and to determine if intraoperative predictors of ETV success add substantially to preoperative predictors.

METHODS

All children undergoing a first ETV (without choroid plexus cauterization) at 1 of 7 HCRN centers up to June 2013 were included in the study and followed up for a minimum of 18 months. Data, including detailed intraoperative data, were prospectively collected as part of the HCRN's Core Data Project and included details of patient characteristics, ETV failure (need for repeat hydrocephalus surgery), and, in a subset of patients, postoperative complications up to the time of discharge.

RESULTS

Three hundred thirty-six eligible children underwent initial ETV, 18.8% of whom had undergone shunt placement prior to the ETV. The median age at ETV was 6.9 years (IQR 1.7–12.6), with 15.2% of the study cohort younger than 12 months of age. The most common etiologies were aqueductal stenosis (24.8%) and midbrain or tectal lesions (21.2%). Visible forniceal injury (16.6%) was more common than previously reported, whereas severe bleeding (1.8%), thalamic contusion (1.8%), venous injury (1.5%), hypothalamic contusion (1.5%), and major arterial injury (0.3%) were rare. The most common postoperative complications were CSF leak (4.4%), hyponatremia (3.9%), and pseudomeningocele (3.9%). New neurological deficit occurred in 1.5% cases, with 0.5% being permanent.

One hundred forty-one patients had documented failure of their ETV requiring repeat hydrocephalus surgery during follow-up, 117 of them during the first 6 months postprocedure. Kaplan-Meier rates of 30-day, 90-day, 6-month, 1-year, and 2-year failure-free survival were 73.7%, 66.7%, 64.8%, 61.7%, and 57.8%, respectively. According to multivariate modeling, the preoperative ETV Success Score (ETVSS) was associated with ETV success (p < 0.001), as was the intraoperative ability to visualize a “naked” basilar artery (p = 0.023).

CONCLUSIONS

The authors' documented experience represents the most detailed account of ETV results in North America and provides the most accurate picture to date of ETV success and complications, based on contemporaneously collected prospective data. Serious complications with ETV are low. In addition to the ETVSS, visualization of a naked basilar artery is predictive of ETV success.

Full access

John R. W. Kestle, Richard Holubkov, D. Douglas Cochrane, Abhaya V. Kulkarni, David D. Limbrick Jr., Thomas G. Luerssen, W. Jerry Oakes, Jay Riva-Cambrin, Curtis Rozzelle, Tamara D. Simon, Marion L. Walker, John C. Wellons III, Samuel R. Browd, James M. Drake, Chevis N. Shannon, Mandeep S. Tamber, William E. Whitehead and The Hydrocephalus Clinical Research Network

OBJECT

In a previous report by the same research group (Kestle et al., 2011), compliance with an 11-step protocol was shown to reduce CSF shunt infection at Hydrocephalus Clinical Research Network (HCRN) centers (from 8.7% to 5.7%). Antibiotic-impregnated catheters (AICs) were not part of the protocol but were used off protocol by some surgeons. The authors therefore began using a new protocol that included AICs in an effort to reduce the infection rate further.

METHODS

The new protocol was implemented at HCRN centers on January 1, 2012, for all shunt procedures (excluding external ventricular drains [EVDs], ventricular reservoirs, and subgaleal shunts). Procedures performed up to September 30, 2013, were included (21 months). Compliance with the protocol and outcome events up to March 30, 2014, were recorded. The definition of infection was unchanged from the authors' previous report.

RESULTS

A total of 1935 procedures were performed on 1670 patients at 8 HCRN centers. The overall infection rate was 6.0% (95% CI 5.1%–7.2%). Procedure-specific infection rates varied (insertion 5.0%, revision 5.4%, insertion after EVD 8.3%, and insertion after treatment of infection 12.6%). Full compliance with the protocol occurred in 77% of procedures. The infection rate was 5.0% after compliant procedures and 8.7% after noncompliant procedures (p = 0.005). The infection rate when using this new protocol (6.0%, 95% CI 5.1%–7.2%) was similar to the infection rate observed using the authors' old protocol (5.7%, 95% CI 4.6%–7.0%).

CONCLUSIONS

CSF shunt procedures performed in compliance with a new infection prevention protocol at HCRN centers had a lower infection rate than noncompliant procedures. Implementation of the new protocol (including AICs) was associated with a 6.0% infection rate, similar to the infection rate of 5.7% from the authors' previously reported protocol. Based on the current data, the role of AICs compared with other infection prevention measures is unclear.

Full access

Gerben E. Breimer, Vivek Bodani, Thomas Looi and James M. Drake

OBJECT

Endoscopic third ventriculostomy (ETV) is an effective but technically demanding procedure with significant risk. Current simulators, including human cadavers, animal models, and virtual reality systems, are expensive, relatively inaccessible, and can lack realistic sensory feedback. The purpose of this study was to construct a realistic, low-cost, reusable brain simulator for ETV and evaluate its fidelity.

METHODS

A brain silicone replica mimicking normal mechanical properties of a 4-month-old child with hydrocephalus was constructed, encased in the replicated skull, and immersed in water. Realistic intraventricular landmarks included the choroid plexus, veins, mammillary bodies, infundibular recess, and basilar artery. The thinned-out third ventricle floor, which dissects appropriately, is quickly replaceable. Standard neuroendoscopic equipment including irrigation is used. Bleeding scenarios are also incorporated. A total of 16 neurosurgical trainees (Postgraduate Years 1–6) and 9 pediatric and adult neurosurgeons tested the simulator. All participants filled out questionnaires (5-point Likert-type items) to rate the simulator for face and content validity.

RESULTS

The simulator is portable, robust, and sets up in minutes. More than 95% of participants agreed or strongly agreed that the simulator's anatomical features, tissue properties, and bleeding scenarios were a realistic representation of that seen during an ETV. Participants stated that the simulator helped develop the required hand-eye coordination and camera skills, and the training exercise was valuable.

CONCLUSIONS

A low-cost, reusable, silicone-based ETV simulator realistically represents the surgical procedure to trainees and neurosurgeons. It can help them develop the technical and cognitive skills for ETV including dealing with complications.

Full access

Gregory W. Albert, George M. Ibrahim, Hiroshi Otsubo, Ayako Ochi, Cristina Y. Go, O. Carter Snead III, James M. Drake and James T. Rutka

Object

Resective surgery is increasingly used in the management of pediatric epilepsy. Frequently, invasive monitoring with subdural electrodes is required to adequately map the epileptogenic focus. The risks of invasive monitoring include the need for 2 operations, infection, and CSF leak. The aim of this study was to evaluate the feasibility and outcomes of resective epilepsy surgery guided by magnetoencephalography (MEG) in children who would have otherwise been candidates for electrode implantation.

Methods

The authors reviewed the records of patients undergoing resective epilepsy surgery at the Hospital for Sick Children between 2001 and 2010. They identified cases in which resections were based on MEG data and no intracranial recordings were performed. Each patient's chart was reviewed for presentation, MRI findings, MEG findings, surgical procedure, pathology, and surgical outcome.

Results

Sixteen patients qualified for the study. All patients had localized spike clusters on MEG and most had abnormal findings on MRI. Resection was carried out in each case based on the MEG data linked to neuronavigation and supplemented with intraoperative neuromonitoring. Overall, 62.5% of patients were seizure free following surgery, and 20% of patients experienced an improvement in seizures without attaining seizure freedom. In 2 cases, additional surgery was performed subsequently with intracranial monitoring in attempts to obtain seizure control.

Conclusions

MEG is a viable alternative to invasive monitoring with intracranial electrodes for planning of resective surgery in carefully selected pediatric patients with localization-related epilepsy. Good candidates for this approach include patients who have a well-delineated, localized spike cluster on MEG that is concordant with findings of other preoperative evaluations and patients with prior brain pathologies that make the implantation of subdural and depth electrodes somewhat problematic.

Full access

Abhaya V. Kulkarni, Jay Riva-Cambrin, Samuel R. Browd, James M. Drake, Richard Holubkov, John R. W. Kestle, David D. Limbrick, Curtis J. Rozzelle, Tamara D. Simon, Mandeep S. Tamber, John C. Wellons III and William E. Whitehead

Object

The use of endoscopic third ventriculostomy (ETV) with choroid plexus cauterization (CPC) has been advocated as an alternative to CSF shunting in infants with hydrocephalus. There are limited reports of this procedure in the North American population, however. The authors provide a retrospective review of the experience with combined ETV + CPC within the North American Hydrocephalus Clinical Research Network (HCRN).

Methods

All children (< 2 years old) who underwent an ETV + CPC at one of 7 HCRN centers before November 2012 were included. Data were collected retrospectively through review of hospital records and the HCRN registry. Comparisons were made to a contemporaneous cohort of 758 children who received their first shunt at < 2 years of age within the HCRN.

Results

Thirty-six patients with ETV + CPC were included (13 with previous shunt). The etiologies of hydrocephalus were as follows: intraventricular hemorrhage of prematurity (9 patients), aqueductal stenosis (8), myelomeningocele (4), and other (15). There were no major intraoperative or early postoperative complications. There were 2 postoperative CSF infections. There were 2 deaths unrelated to hydrocephalus and 1 death from seizure. In 18 patients ETV + CPC failed at a median time of 30 days after surgery (range 4–484 days). The actuarial 3-, 6-, and 12-month success for ETV + CPC was 58%, 52%, and 52%. Time to treatment failure was slightly worse for the 36 patients with ETV + CPC compared with the 758 infants treated with shunts (p = 0.012). Near-complete CPC (≥ 90%) was achieved in 11 cases (31%) overall, but in 50% (10 of 20 cases) in 2012 versus 6% (1 of 16 cases) before 2012 (p = 0.009). Failure was higher in children with < 90% CPC (HR 4.39, 95% CI 0.999–19.2, p = 0.0501).

Conclusions

The early North American multicenter experience with ETV + CPC in infants demonstrates that the procedure has reasonable safety in selected cases. The degree of CPC achieved might be associated with a surgeon's learning curve and appears to affect success, suggesting that surgeon training might improve results.

Full access

William E. Whitehead, Jay Riva-Cambrin, John C. Wellons III, Abhaya V. Kulkarni, Samuel Browd, David Limbrick, Curtis Rozzelle, Mandeep S. Tamber, Tamara D. Simon, Chevis N. Shannon, Richard Holubkov, W. Jerry Oakes, Thomas G. Luerssen, Marion L. Walker, James M. Drake and John R. W. Kestle

Object

Shunt survival may improve when ventricular catheters are placed into the frontal horn or trigone of the lateral ventricle. However, techniques for accurate catheter placement have not been developed. The authors recently reported a prospective study designed to test the accuracy of catheter placement with the assistance of intraoperative ultrasound, but the results were poor (accurate placement in 59%). A major reason for the poor accurate placement rate was catheter movement that occurred between the time of the intraoperative ultrasound image and the first postoperative scan (33% of cases). The control group of non–ultrasound using surgeons also had a low rate of accurate placement (accurate placement in 49%). The authors conducted an exploratory post hoc analysis of patients in their ultrasound study to identify factors associated with either catheter movement or poor catheter placement so that improved surgical techniques for catheter insertion could be developed.

Methods

The authors investigated the following risk factors for catheter movement and poor catheter placement: age, ventricular size, cortical mantle thickness, surgeon experience, surgeon experience with ultrasound prior to trial, shunt entry site, shunt hardware at entry site, ventricular catheter length, and use of an ultrasound probe guide for catheter insertion. Univariate analysis followed by multivariate logistic regression models were used to determine which factors were independent risk factors for either catheter movement or inaccurate catheter location.

Results

In the univariate analyses, only age < 6 months was associated with catheter movement (p = 0.021); cortical mantle thickness < 1 cm was near-significant (p = 0.066). In a multivariate model, age remained significant after adjusting for cortical mantle thickness (OR 8.35, exact 95% CI 1.20–infinity). Univariate analyses of factors associated with inaccurate catheter placement showed that age < 6 months (p = 0.001) and a posterior shunt entry site (p = 0.021) were both associated with poor catheter placement. In a multivariate model, both age < 6 months and a posterior shunt entry site were independent risk factors for poor catheter placement (OR 4.54, 95% CI 1.80–11.42, and OR 2.59, 95% CI 1.14–5.89, respectively).

Conclusions

Catheter movement and inaccurate catheter placement are both more likely to occur in young patients (< 6 months). Inaccurate catheter placement is also more likely to occur in cases involving a posterior shunt entry site than those involving an anterior shunt entry site. Future clinical studies aimed at improving shunt placement techniques must consider the effects of young age and choice of entry site on catheter location.