Browse

You are looking at 1 - 3 of 3 items for

  • By Author: Deviren, Vedat x
  • By Author: Mundis, Gregory M. x
  • By Author: Hart, Robert A. x
Clear All
Free access

Justin S. Smith, Christopher I. Shaffrey, Virginie Lafage, Frank Schwab, Justin K. Scheer, Themistocles Protopsaltis, Eric Klineberg, Munish Gupta, Richard Hostin, Kai-Ming G. Fu, Gregory M. Mundis Jr., Han Jo Kim, Vedat Deviren, Alex Soroceanu, Robert A. Hart, Douglas C. Burton, Shay Bess, Christopher P. Ames and the International Spine Study Group

OBJECT

Although recent studies suggest that average clinical outcomes are improved following surgery for selected adult spinal deformity (ASD) patients, these outcomes span a broad range. Few studies have specifically addressed factors that may predict favorable clinical outcomes. The objective of this study was to compare patients with ASD with best versus worst clinical outcomes following surgical treatment to identify distinguishing factors that may prove useful for patient counseling and optimization of clinical outcomes.

METHODS

This is a retrospective review of a prospectively collected, multicenter, database of consecutively enrolled patients with ASD who were treated operatively. Inclusion criteria were age > 18 years and ASD. For patients with a minimum of 2-year follow-up, those with best versus worst outcomes were compared separately based on Scoliosis Research Society-22 (SRS-22) and Oswestry Disability Index (ODI) scores. Only patients with a baseline SRS-22 ≤ 3.5 or ODI ≥ 30 were included to minimize ceiling/floor effects. Best and worst outcomes were defined for SRS-22 (≥ 4.5 and ≤ 2.5, respectively) and ODI (≤ 15 and ≥ 50, respectively).

RESULTS

Of 257 patients who met the inclusion criteria, 227 (88%) had complete baseline and 2-year follow-up SRS-22 and ODI outcomes scores and radiographic imaging and were analyzed in the present study. Of these 227 patients, 187 had baseline SRS-22 scores ≤ 3.5, and 162 had baseline ODI scores ≥ 30. Forthe SRS-22, best and worst outcomes criteria were met at follow-up for 25 and 27 patients, respectively. For the ODI, best and worst outcomes criteria were met at follow-up for 43 and 51 patients, respectively. With respect to the SRS-22, compared with best outcome patients, those with worst outcomes had higher baseline SRS-22 scores (p < 0.0001), higher prevalence of baseline depression (p < 0.001), more comorbidities (p = 0.012), greater prevalence of prior surgery (p = 0.007), a higher complication rate (p = 0.012), and worse baseline deformity (sagittal vertical axis [SVA], p = 0.045; pelvic incidence [PI] and lumbar lordosis [LL] mismatch, p = 0.034). The best-fit multivariate model for SRS-22 included baseline SRS-22 (p = 0.033), baseline depression (p = 0.012), and complications (p = 0.030). With respect to the ODI, compared with best outcome patients, those with worst outcomes had greater baseline ODI scores (p < 0.001), greater baseline body mass index (BMI; p = 0.002), higher prevalence of baseline depression (p < 0.028), greater baseline SVA (p = 0.016), a higher complication rate (p = 0.02), and greater 2-year SVA (p < 0.001) and PI-LL mismatch (p = 0.042). The best-fit multivariate model for ODI included baseline ODI score (p < 0.001), 2-year SVA (p = 0.014) and baseline BMI (p = 0.037). Age did not distinguish best versus worst outcomes for SRS-22 or ODI (p > 0.1).

CONCLUSIONS

Few studies have specifically addressed factors that distinguish between the best versus worst clinical outcomes for ASD surgery. In this study, baseline and perioperative factors distinguishing between the best and worst outcomes for ASD surgery included several patient factors (baseline depression, BMI, comorbidities, and disability), as well as residual deformity (SVA), and occurrence of complications. These findings suggest factors that may warrant greater awareness among clinicians to achieve optimal surgical outcomes for patients with ASD.

Free access

Justin K. Scheer, Jessica A. Tang, Justin S. Smith, Eric Klineberg, Robert A. Hart, Gregory M. Mundis Jr., Douglas C. Burton, Richard Hostin, Michael F. O'Brien, Shay Bess, Khaled M. Kebaish, Vedat Deviren, Virginie Lafage, Frank Schwab, Christopher I. Shaffrey, Christopher P. Ames and the International Spine Study Group

Object

Complications and reoperation for surgery to correct adult spinal deformity are not infrequent, and many studies have analyzed the rates and factors that influence the likelihood of reoperation. However, there is a need for more comprehensive analyses of reoperation in adult spinal deformity surgery from a global standpoint, particularly focusing on the 1st year following operation and considering radiographic parameters and the effects of reoperation on health-related quality of life (HRQOL). This study attempts to determine the prevalence of reoperation following surgery for adult spinal deformity, assess the indications for these reoperations, evaluate for a relation between specific radiographic parameters and the need for reoperation, and determine the potential impact of reoperation on HRQOL measures.

Methods

A retrospective review was conducted of a prospective, multicenter, adult spinal deformity database collected through the International Spine Study Group. Data collected included age, body mass index, sex, date of surgery, information regarding complications, reoperation dates, length of stay, and operation time. The radiographic parameters assessed were total number of levels instrumented, total number of interbody fusions, C-7 sagittal vertical axis, uppermost instrumented vertebra (UIV) location, and presence of 3-column osteotomies. The HRQOL assessment included Oswestry Disability Index (ODI), 36-Item Short Form Health Survey physical component and mental component summary, and SRS-22 scores. Smoking history, Charlson Comorbidity Index scores, and American Society of Anesthesiologists Physical Status classification grades were also collected and assessed for correlation with risk of early reoperation. Various statistical tests were performed for evaluation of specific factors listed above, and the level of significance was set at p < 0.05.

Results

Fifty-nine (17%) of a total of 352 patients required reoperation. Forty-four (12.5%) of the reoperations occurred within 1 year after the initial surgery, including 17 reoperations (5%) within 30 days.

Two hundred sixty-eight patients had a minimum of 1 year of follow-up. Fifty-three (20%) of these patients had a 3-column osteotomy, and 10 (19%) of these 53 required reoperation within 1 year of the initial procedure. However, 3-column osteotomy was not predictive of reoperation within 1 year, p = 0.5476). There were no significant differences between groups with regard to the distribution of UIV, and UIV did not have a significant effect on reoperation rates. Patients needing reoperation within 1 year had worse ODI and SRS-22 scores measured at 1-year follow-up than patients not requiring operation.

Conclusions

Analysis of data from a large multicenter adult spinal deformity database shows an overall 17% reoperation rate, with a 19% reoperation rate for patients treated with 3-column osteotomy and a 16% reoperation rate for patients not treated with 3-column osteotomy. The most common indications for reoperation included instrumentation complications and radiographic failure. Reoperation significantly affected HRQOL outcomes at 1-year follow-up. The need for reoperation may be minimized by carefully considering spinal alignment, termination of fixation, and type of surgical procedure (presence of osteotomy). Precautions should be taken to avoid malposition or instrumentation (rod) failure.