Browse

You are looking at 1 - 10 of 20 items for

  • By Author: Charbel, Fady T. x
Clear All
Restricted access

Sophia F. Shakur, Ali Alaraj, Nasya Mendoza-Elias, Muhammad Osama and Fady T. Charbel

OBJECTIVE

The pathogenesis of cerebral aneurysms in patients with internal carotid artery (ICA) occlusion is hypothesized to be hemodynamic. For the first time, the authors quantify the hemodynamic characteristics associated with aneurysm formation in patients with ICA occlusion.

METHODS

Records of patients with unilateral ICA stenosis or occlusion ≥ 90% who underwent hemodynamic assessment before treatment using quantitative MR angiography were retrospectively reviewed. The patients were classified into 2 groups based on the presence or absence of aneurysms. The hemodynamic parameters of flow volume rate, flow velocity, and wall shear stress (WSS) were measured in each vessel supplying collateral flow—bilateral A1 segments and bilateral posterior communicating arteries—and then compared between the groups.

RESULTS

A total of 36 patients were included (8 with and 28 without aneurysms). The mean flow (72.3 vs 48.9 ml/min, p = 0.10), flow velocity (21.1 vs 12.7 cm/sec, p = 0.006), and WSS (22.0 vs 12.3 dynes/cm2, p = 0.003) were higher in the A1 segment contralateral to the side of the patent ICA in patients with versus without aneurysms. All de novo or growing aneurysms in our cohort were located on the anterior communicating artery (ACoA) or P1 segment.

CONCLUSIONS

Flow velocity and WSS are significantly higher across the ACoA in patients who harbor an aneurysm, and de novo or growing aneurysms are often located on collateral vessels. Thus, robust primary collaterals after ICA occlusion may be a contributing factor in cerebral aneurysm formation.

Restricted access

Sophia F. Shakur, Ali Alaraj, Nasya Mendoza-Elias, Muhammad Osama and Fady T. Charbel

OBJECTIVE

The pathogenesis of cerebral aneurysms in patients with internal carotid artery (ICA) occlusion is hypothesized to be hemodynamic. For the first time, the authors quantify the hemodynamic characteristics associated with aneurysm formation in patients with ICA occlusion.

METHODS

Records of patients with unilateral ICA stenosis or occlusion ≥ 90% who underwent hemodynamic assessment before treatment using quantitative MR angiography were retrospectively reviewed. The patients were classified into 2 groups based on the presence or absence of aneurysms. The hemodynamic parameters of flow volume rate, flow velocity, and wall shear stress (WSS) were measured in each vessel supplying collateral flow—bilateral A1 segments and bilateral posterior communicating arteries—and then compared between the groups.

RESULTS

A total of 36 patients were included (8 with and 28 without aneurysms). The mean flow (72.3 vs 48.9 ml/min, p = 0.10), flow velocity (21.1 vs 12.7 cm/sec, p = 0.006), and WSS (22.0 vs 12.3 dynes/cm2, p = 0.003) were higher in the A1 segment contralateral to the side of the patent ICA in patients with versus without aneurysms. All de novo or growing aneurysms in our cohort were located on the anterior communicating artery (ACoA) or P1 segment.

CONCLUSIONS

Flow velocity and WSS are significantly higher across the ACoA in patients who harbor an aneurysm, and de novo or growing aneurysms are often located on collateral vessels. Thus, robust primary collaterals after ICA occlusion may be a contributing factor in cerebral aneurysm formation.

Full access

Alexander Ivanov, Andreas Linninger, Chih-Yang Hsu, Sepideh Amin-Hanjani, Victor A. Aletich, Fady T. Charbel and Ali Alaraj

OBJECT

The use of digital subtraction angiography (DSA) for semiquantitative cerebral blood flow(CBF) assessment is a new technique. The aim of this study was to determine whether patients with aneurysmal subarachnoid hemorrhage (aSAH) with higher Hunt and Hess grades also had higher angiographic contrast transit times (TTs) than patients with lower grades.

METHODS

A cohort of 30 patients with aSAH and 10 patients without aSAH was included. Relevant clinical information was collected. A method to measure DSA TTs by color-coding reconstructions from DSA contrast-intensity images was applied. Regions of interest (ROIs) were chosen over major cerebral vessels. The estimated TTs included time-to-peak from 0% to 100% (TTP0–100), TTP from 25% to 100% (TTP25–100), and TT from 100% to 10% (TT100–10) contrast intensities. Statistical analysis was used to compare TTs between Group A (Hunt and Hess Grade I-II), Group B (Hunt and Hess Grade III-IV), and the control group. The correlation coefficient was calculated between different ROIs in aSAH groups.

RESULTS

There was no difference in demographic factors between Group A (n = 10), Group B (n = 20), and the control group (n = 10). There was a strong correlation in all TTs between ROIs in the middle cerebral artery (M1, M2) and anterior cerebral artery (A1, A2). There was a statistically significant difference between Groups A and B in all TT parameters for ROIs. TT100–10 values in the control group were significantly lower than the values in Group B.

CONCLUSIONS

The DSA TTs showed significant correlation with Hunt and Hess grades. TT delays appear to be independent of increased intracranial pressure and may be an indicator of decreased CBF in patients with a higher Hunt and Hess grade. This method may serve as an indirect technique to assess relative CBF in the angiography suite.

Free access

Ziad A. Hage and Fady T. Charbel

We showcase the microsurgical clipping of a previously coiled and ruptured anterior communicating artery aneurysm, done through a right-sided approach. Initial clipping with a fenestrated clip occluded the flow in the right A2. After temporary clipping of both A1 and A2 vessels, we cut the right A1 and A2, clipped the aneurysm with a straight clip while preserving the flow in the left A1 and A2 and then performed reanastomosis of the right A1-A2 in an end to end fashion. This strategy allowed for complete obliteration of the aneurysm while preserving the flow in all four vessels.

The video can be found here: http://youtu.be/4Y024zU5NVo.

Full access

Daniel M. Birk, Matthew K. Tobin, Heather E. Moss, Eric Feinstein, Fady T. Charbel and Ali Alaraj

The most commonly described indications for surgical management of closed depressed skull fractures are hematoma evacuation and repair of extensive cosmetic deformity. Venous sinus injury, which occurs in a subset of depressed skull fractures, is not typically listed as an indication for surgical treatment due to the potential for major venous hemorrhage associated with surgery near these structures. However, if patients exhibit signs and symptoms of intracranial hypertension and radiographic findings demonstrate sinus compromise, surgical elevation of the depressed skull fragments is indicated. The authors present the case of a 25-year-old woman with a depressed skull fracture secondary to a gunshot wound with symptomatic compromise in venous outflow of the posterior one-third of the superior sagittal sinus. The patient was treated with surgical decompression via bilateral craniectomy along with intracranial pressure–lowering medical therapy and had almost full resolution of her presenting symptoms with documented improvement in flow through the superior sagittal sinus. While the use of surgical treatment for these types of injuries is highly debated, the authors demonstrate here that safe, effective surgical management of these patients is possible and that surgical decompression should always be considered in the case of symptomatic venous sinus flow obstruction.

Free access

Ziad A. Hage and Fady T. Charbel

We showcase the microsurgical clipping of a left middle cerebral artery (MCA) aneurysm-(B) done through a modified right lateral supraorbital craniotomy, as well as clipping of a previously coiled anterior communicating (ACOM) artery aneurysm-(C) and a bilobed right MCA aneurysm-(A). Splitting of the right sylvian fissure is initially performed following which a subfrontal approach is used to expose and dissect the contralateral sylvian fissure. The left MCA aneurysm is identified and clipped. The ACOM aneurysm is then clipped following multiple clip repositioning based on flow measurements. The right MCA aneurysm is then identified and each lobe is clipped separately.

The first picture showcased in this video is a side to side right and left ICA injection in AP projection. In this picture, (A) points to the bilobed right MCA aneurysm, (B) to the left middle cerebral artery (MCA) aneurysm, and (C) to the previously coiled anterior communicating (ACOM) artery aneurysm. The red dotted line shows that both MCA aneurysms lie within the same plane which makes it easier to clip both of them, through one small craniotomy.

The video can be found here: http://youtu.be/4cQC7nHsL5I.

Restricted access

Ziad A. Hage, Sepideh Amin-Hanjani, Dennis Wen and Fady T. Charbel

In this article, the authors describe the case of a 27-year-old female presenting with a 2-year history of neck pain and radiculopathy attributable to compression of the right C-7 nerve root by tortuosity of the vertebral artery at the level of the C6–7 cervical foramina. An anterolateral approach to the transverse foramen was used to perform a vascular decompression to decompress the nerve root. The procedure was uneventful, and the patient woke up with almost all of her symptoms resolved. The authors also include a literature review of techniques performed in this setting, showing that multiple surgical approaches can be used and should be tailored to the patient symptoms and lesion characteristics.

Restricted access

Omar M. Qahwash, Ali Alaraj, Victor Aletich, Fady T. Charbel and Sepideh Amin-Hanjani

Object

The goal of this study was to demonstrate feasibility and evaluate technical aspects of early endovascular access through extracranial-intracranial (EC-IC) bypass grafts.

Methods

Patients undergoing endovascular interventions through the graft in the acute postoperative period following EC-IC bypass are presented. Results, complications, and technical nuances are reviewed.

Results

Fourteen endovascular procedures were performed in 5 patients after EC-IC bypass for ruptured aneurysms in 4 patients and posterior circulation ischemia in 1 patient. In 2 patients, a saphenous vein graft (SVG) was used to bypass the common carotid artery (CCA) to the middle cerebral artery (MCA). One patient underwent a superficial temporal artery (STA)–MCA bypass, and in 2 other patients the STA stump was connected to the intracranial circulation via an interposition SVG. The interval from surgery to endovascular intervention spanned 2–18 days; the indication was intracranial vasospasm in all patients. One case involved angioplasty of the proximal anastomosis on postoperative Day 14. All other interventions entailed proximal access through the bypass conduit for intraarterial infusion of vasodilators. Significant vasospasm of the STA itself was encountered in 2 patients during endovascular manipulation, and it was treated with intraarterial nitroglycerin. There were no cases of anastomotic disruption.

Conclusions

Endovascular catheterization and intervention involving a recent EC-IC bypass is feasible. The main limitation in this series was catheter-induced vasospasm involving the STA. A vein graft may be the more appropriate option in patients with subarachnoid hemorrhage who may require subsequent endovascular intervention for vasospasm.

Restricted access

Ali Alaraj, Troy Munson, Sebastian R. Herrera, Victor Aletich, Fady T. Charbel and Sepideh Amin-Hanjani

Object

Cerebrospinal fluid hypotension, or “brain sag,” is a recently described phenomenon most commonly seen following craniotomy for the clipping of ruptured aneurysms along with preoperative lumbar drain placement. The clinical features and CT findings have been previously described. Clinical presentation can be similar to and often mistaken for cerebral vasospasm. In this study, the authors report on the angiographic findings in patients with brain sag.

Methods

Five cases of brain sag were diagnosed (range 1–4 days) after the surgical treatment of ruptured aneurysms at the University of Illinois at Chicago. All patients met the clinical and CT criteria for brain sag. Admission cerebral angiograms and subsequent angiograms during symptoms of brain sag were obtained in all patients. In 3 patients, angiography was performed after the resolution of symptoms.

Results

In all 5 patients, the level of the basilar artery apex was displaced inferiorly with respect to the posterior clinoid processes during brain sag. This displacement was significant enough to create a noticeable kink in the basilar artery (“cobra sign”) in 3 patients. Other angiographic findings included foreshortening or kinking of the intracranial vertebral artery. In all patients, the posterior cerebral arteries were displaced medially and inferiorly. Three patients were treated for simultaneous severe radiological vasospasm. In 4 patients, the brain sag was recognized, and the patients' conditions improved when they were placed flat or in the Trendelenburg position, at times combined with an epidural blood patch. Patients with follow-up angiography studies after the symptoms had resolved displayed a reversal of the angiographic features.

Conclusions

Brain sag appears to be associated with characteristic angiographic features. Recognizing these features may help to diagnose brain sag as the cause of neurological deterioration in this patient population.