Browse

You are looking at 1 - 5 of 5 items for

  • By Author: Blondel, Benjamin x
Clear All
Free access

Thomas Graillon, Patrick Rakotozanany, Benjamin Blondel, Tarek Adetchessi, Henry Dufour and Stéphane Fuentes

Object

The optimal management of unstable thoracolumbar fractures remains unclear. The objective of the present study was to evaluate the results of using an expandable prosthetic vertebral body cage (EPVBC) in the management of unstable thoracolumbar fractures.

Methods

Eighty-five patients with unstable T7–L4 thoracolumbar fractures underwent implantation of an EPVBC via an anterior approach combined with posterior fixation. Long-term functional outcomes, including visual analog scale and Oswestry disability index scores, were evaluated.

Results

In a mean follow-up period of 16 months, anterior fixation led to a significant increase in vertebral body height, with an average gain of 19%. However, the vertebral regional kyphosis angle was not significantly increased by anterior fixation alone. No significant difference was found between early postoperative, 3-month, and 1-year postoperative regional kyphosis angle and vertebral body height. Postoperative impaction of the prosthetic cage in adjacent endplates was observed in 35% of the cases, without worsening at last follow-up. Complete fusion was observed at 1 year postoperatively and no cases of infections or revisions were observed in relation to the anterior approach.

Conclusions

The use of EPVBCs for unstable thoracolumbar fractures is safe and effective in providing long-term vertebral body height restoration and kyphosis correction, with a moderate surgical and sepsis risk. Anterior cage implantation is an alternative to iliac bone graft fusion and is a viable option in association with a posterior approach, in a single operation without additional risks.

Free access

Justin K. Scheer, Jessica A. Tang, Justin S. Smith, Frank L. Acosta Jr., Themistocles S. Protopsaltis, Benjamin Blondel, Shay Bess, Christopher I. Shaffrey, Vedat Deviren, Virginie Lafage, Frank Schwab, Christopher P. Ames and the International Spine Study Group

This paper is a narrative review of normal cervical alignment, methods for quantifying alignment, and how alignment is associated with cervical deformity, myelopathy, and adjacent-segment disease (ASD), with discussions of health-related quality of life (HRQOL). Popular methods currently used to quantify cervical alignment are discussed including cervical lordosis, sagittal vertical axis, and horizontal gaze with the chin-brow to vertical angle. Cervical deformity is examined in detail as deformities localized to the cervical spine affect, and are affected by, other parameters of the spine in preserving global sagittal alignment. An evolving trend is defining cervical sagittal alignment. Evidence from a few recent studies suggests correlations between radiographic parameters in the cervical spine and HRQOL. Analysis of the cervical regional alignment with respect to overall spinal pelvic alignment is critical. The article details mechanisms by which cervical kyphotic deformity potentially leads to ASD and discusses previous studies that suggest how postoperative sagittal malalignment may promote ASD. Further clinical studies are needed to explore the relationship of cervical malalignment and the development of ASD. Sagittal alignment of the cervical spine may play a substantial role in the development of cervical myelopathy as cervical deformity can lead to spinal cord compression and cord tension. Surgical correction of cervical myelopathy should always take into consideration cervical sagittal alignment, as decompression alone may not decrease cord tension induced by kyphosis. Awareness of the development of postlaminectomy kyphosis is critical as it relates to cervical myelopathy. The future direction of cervical deformity correction should include a comprehensive approach in assessing global cervicalpelvic relationships. Just as understanding pelvic incidence as it relates to lumbar lordosis was crucial in building our knowledge of thoracolumbar deformities, T-1 incidence and cervical sagittal balance can further our understanding of cervical deformities. Other important parameters that account for the cervical-pelvic relationship are surveyed in detail, and it is recognized that all such parameters need to be validated in studies that correlate HRQOL outcomes following cervical deformity correction.

Restricted access

Justin S. Smith, Christopher I. Shaffrey, Virginie Lafage, Benjamin Blondel, Frank Schwab, Richard Hostin, Robert Hart, Brian O'Shaughnessy, Shay Bess, Serena S. Hu, Vedat Deviren, Christopher P. Ames and International Spine Study Group

Object

Sagittal spinopelvic malalignment is a significant cause of pain and disability in patients with adult spinal deformity. Surgical correction of spinopelvic malalignment can result in compensatory changes in spinal alignment outside of the fused spinal segments. These compensatory changes, termed reciprocal changes, have been defined for thoracic and lumbar regions but not for the cervical spine. The object of this study was to evaluate postoperative reciprocal changes within the cervical spine following lumbar pedicle subtraction osteotomy (PSO).

Methods

This was a multicenter retrospective radiographic analysis of patients from International Spine Study Group centers. Inclusion criteria were as follows: adults (>18 years old) with spinal deformity treated using lumbar PSO, a preoperative C7–S1 plumb line greater than 5 cm, and availability of pre- and postoperative full-length standing radiographs.

Results

Seventy-five patients (60 women, mean age 59 years) were included. The lumbar PSO significantly improved sagittal alignment, including the C7–S1 plumb line, C7–T12 inclination, and pelvic tilt (p <0.001). After lumbar PSO, reciprocal changes were seen to occur in C2–7 cervical lordosis (from 30.8° to 21.6°, p <0.001), C2–7 plumb line (from 27.0 mm to 22.9 mm), and T-1 slope (from −38.9° to −30.4°, p <0.001). Ideal correction of sagittal malalignment (postoperative sagittal vertical alignment < 50 mm) was associated with the greatest relaxation of cervical hyperlordosis (−12.4° vs −5.7°, p = 0.037). A change in cervical lordosis correlated with changes in T-1 slope (r = −0.621, p <0.001), C7–T12 inclination (r = 0.418, p <0.001), T12–S1 angle (r = −0.339, p = 0.005), and C7–S1 plumb line (r = 0.289, p = 0.018). Radiographic parameters that correlated with changes in cervical lordosis on multivariate linear regression analysis included change in T-1 slope and change in C2–7 plumb line (r2 = 0.53, p <0.001).

Conclusions

Adults with positive sagittal spinopelvic malalignment compensate with abnormally increased cervical lordosis in an effort to maintain horizontal gaze. Surgical correction of sagittal malalignment results in improvement of the abnormal cervical hyperlordosis through reciprocal changes.

Restricted access

Stéphane Fuentes, Sergueï Malikov, Benjamin Blondel, Philippe Métellus, Henry Dufour and François Grisoli

Object

The cervicothoracic junction is always a difficult area to approach. When operating on this specific area (for tumor or trauma), the aim is generally to decompress and stabilize the spine. The authors describe an improved median sternotomy method for reaching the anterior aspect of the spine down to T-5.

Methods

Seven patients with a mean age of 40 years (range 17–68 years) were included in this study. The vertebral lesion was due to trauma in 4 cases and tumor in the other 3. A single vertebral body was involved in 2 cases, 2 in 3 cases, and 3 in 2 cases. The vertebra most often involved was T-3 (6 cases), although T-4 was involved in 2 cases, T-5 in 2 cases, and T-1 and T-2 in 1 case each. All patients underwent the same preoperative workup: CT scanning, MR imaging, and CT angiography of the aortic arch.

Results

The median sternotomy made it possible to effectively decompress and stabilize the spinal cord. An anterior screw plate was used in 5 cases. The plate extended from T-2 to T-5 in 3 cases, from T-2 to T-4 in 2 cases, and from C-7 to T-4 in 1 case. The mean duration of surgery was 195 minutes (range 180–240 minutes). No neurological deterioration occurred. The mean hospital stay was 8 days (range 6–15 days). In 2 cases (28.6%), recurrent left nerve palsy was observed postoperatively; the palsy was transient in both of these cases, and full recovery occurred within 3 months. The mean follow-up among this series of patients was 29 months (range 22–38 months).

Conclusions

The median sternotomy provided a good means of reaching the upper thoracic spine (T2–5) and cervicothoracic junction. It enables surgeons to decompress the spinal cord and stabilize the spine.