Browse

You are looking at 1 - 10 of 32 items for

  • By Author: Baaj, Ali A. x
Clear All
Restricted access

Michael D. Staudt, Doron Rabin, Ali A. Baaj, Neil R. Crawford and Neil Duggal

OBJECTIVE

There are limited data regarding the implications of revision posterior surgery in the setting of previous cervical arthroplasty (CA). The purpose of this study was to analyze segmental biomechanics in human cadaveric specimens with and without CA, in the context of graded posterior resection.

METHODS

Fourteen human cadaveric cervical spines (C3–T1 or C2–7) were divided into arthroplasty (ProDisc-C, n = 7) and control (intact disc, n = 7) groups. Both groups underwent sequential posterior element resections: unilateral foraminotomy, laminoplasty, and finally laminectomy. Specimens were studied sequentially in two different loading apparatuses during the induction of flexion-extension, lateral bending, and axial rotation.

RESULTS

Range of motion (ROM) after artificial disc insertion was reduced relative to that in the control group during axial rotation and lateral bending (13% and 28%, respectively; p < 0.05) but was similar during flexion and extension. With sequential resections, ROM increased by a similar magnitude following foraminotomy and laminoplasty in both groups. Laminectomy had a much greater effect: mean (aggregate) ROM during flexion-extension, lateral bending, and axial rotation was increased by a magnitude of 52% following laminectomy in the setting of CA, compared to an 8% increase without arthroplasty. In particular, laminectomy in the setting of CA introduced significant instability in flexion-extension, characterized by a 90% increase in ROM from laminoplasty to laminectomy, compared to a 16% increase in ROM from laminoplasty to laminectomy without arthroplasty (p < 0.05).

CONCLUSIONS

Foraminotomy and laminoplasty did not result in significant instability in the setting of CA, compared to controls. Laminectomy alone, however, resulted in a significant change in biomechanics, allowing for significantly increased flexion and extension. Laminectomy alone should be used with caution in the setting of previous CA.

Free access

Ajit Jada, Charles E. Mackel, Steven W. Hwang, Amer F. Samdani, James H. Stephen, James T. Bennett and Ali A. Baaj

Adolescent idiopathic scoliosis (AIS) is a 3D spinal deformity affecting children between the ages of 11 and 18, without an identifiable etiology. The authors here reviewed the available literature to provide spine surgeons with a summary and update on current management options.

Smaller thoracic and thoracolumbar curves can be managed conservatively with observation or bracing, but corrective surgery may be indicated for rapidly growing or larger curves. The authors summarize the atypical features to look for in patients who may warrant further investigation with MRI during diagnosis and review the fundamental principles of the surgical management of AIS.

Patients with AIS can be managed very well with a combination of conservative and surgical options. Outcomes for these children are excellent with sustained longer-term results.

Free access

Ali A. Baaj, Douglas Brockmeyer, Andrew Jea and Amer F. Samdani

Full access

Mauricio J. Avila, Jesse Skoch, Vernard S. Fennell, Sheri K. Palejwala, Christina M. Walter, Samuel Kim and Ali A. Baaj

Primary bone tumors of the spine are rare entities with a poor prognosis if left untreated. En bloc excision is the preferred surgical approach to minimize the rate of recurrence. Paraspinal primary bone tumors are even less common. In this technical note the authors present an approach to the en bloc resection of primary bone tumors of the paraspinal thoracic region with posterior vertebral body hemiosteotomies and lateral thoracotomy. They also describe 2 illustrative cases.

Full access

Vernard S. Fennell, Sheri Palejwala, Jesse Skoch, David A. Stidd and Ali A. Baaj

Object

Experience with freehand thoracic pedicle screw placement is well described in the literature. Published techniques rely on various starting points and trajectories for each level or segment of the thoracic spine. Furthermore, few studies provide specific guidance on sagittal and axial trajectories. The goal of this study was to propose a uniform entry point and sagittal trajectory for all thoracic levels during freehand pedicle screw placement and determine the accuracy of this technique.

Methods

The authors retrospectively reviewed postoperative CT scans of 33 consecutive patients who underwent open, freehand thoracic pedicle-screw fixation using a uniform entry point and sagittal trajectory for all levels. The same entry point for each level was defined as a point 3 mm caudal to the junction of the transverse process and the lateral margin of the superior articulating process, and the sagittal trajectory was always orthogonal to the dorsal curvature of the spine at that level. The medial angulation (axial trajectory) was approximately 30° at T-1 and T-2, and 20° from T-3 to T-12. Breach was defined as greater than 25% of the screw diameter residing outside of the pedicle or vertebral body.

Results

A total of 219 thoracic pedicle screws were placed with a 96% accuracy rate. There were no medial breaches and 9 minor lateral breaches (4.1%). None of the screws had to be repositioned postoperatively, and there were no neurovascular complications associated with the breaches.

Conclusions

It is feasible to place freehand thoracic pedicle screws using a uniform entry point and sagittal trajectory for all levels. The entry point does not have to be adjusted for each level as reported in existing studies, although this technique was not tested in severe scoliotic spines. While other techniques are effective and widely used, this particular method provides more specific parameters and may be easier to learn, teach, and adopt.

Full access

Juan S. Uribe, Edwin Ramos, Sammy Youssef, Fernando L. Vale and Ali A. Baaj

Free access

Ziev B. Moses, Rory R. Mayer, Benjamin A. Strickland, Ryan M. Kretzer, Jean-Paul Wolinsky, Ziya L. Gokaslan and Ali A. Baaj

Object

Parallel advancements in image guidance technology and minimal access techniques continue to push the frontiers of minimally invasive spine surgery (MISS). While traditional intraoperative imaging remains widely used, newer platforms, such as 3D-fluoroscopy, cone-beam CT, and intraoperative CT/MRI, have enabled safer, more accurate instrumentation placement with less radiation exposure to the surgeon. The goal of this work is to provide a review of the current uses of advanced image guidance in MISS.

Methods

The authors searched PubMed for relevant articles concerning MISS, with particular attention to the use of image-guidance platforms. Pertinent studies published in English were further compiled and characterized into relevant analyses of MISS of the cervical, thoracic, and lumbosacral regions.

Results

Fifty-two studies were included for review. These describe the use of the iso-C system for 3D navigation during C1–2 transarticular screw placement, the use of endoscopic techniques in the cervical spine, and the role of navigation guidance at the occipital-cervical junction. The authors discuss the evolving literature concerning neuronavigation during pedicle screw placement in the thoracic and lumbar spine in the setting of infection, trauma, and deformity surgery and review the use of image guidance in transsacral approaches.

Conclusions

Refinements in image-guidance technologies and minimal access techniques have converged on spinal pathology, affording patients the ability to undergo safe, accurate operations without the associated morbidities of conventional approaches. While percutaneous transpedicular screw placement is among the most common procedures to benefit from navigation, other areas of spine surgery can benefit from advances in neuronavigation and further growth in the field of image-guided MISS is anticipated.