Browse

You are looking at 1 - 10 of 52 items for

  • By Author: Anderson, Richard C. E. x
Clear All
Free access

Nikita G. Alexiades, Edward S. Ahn, Jeffrey P. Blount, Douglas L. Brockmeyer, Samuel R. Browd, Gerald A. Grant, Gregory G. Heuer, Todd C. Hankinson, Bermans J. Iskandar, Andrew Jea, Mark D. Krieger, Jeffrey R. Leonard, David D. Limbrick Jr., Cormac O. Maher, Mark R. Proctor, David I. Sandberg, John C. Wellons III, Belinda Shao, Neil A. Feldstein and Richard C. E. Anderson

OBJECTIVE

Complications after complex tethered spinal cord (cTSC) surgery include infections and cerebrospinal fluid (CSF) leaks. With little empirical evidence to guide management, there is variability in the interventions undertaken to limit complications. Expert-based best practices may improve the care of patients undergoing cTSC surgery. Here, authors conducted a study to identify consensus-driven best practices.

METHODS

The Delphi method was employed to identify consensual best practices. A literature review regarding cTSC surgery together with a survey of current practices was distributed to 17 board-certified pediatric neurosurgeons. Thirty statements were then formulated and distributed to the group. Results of the second survey were discussed during an in-person meeting leading to further consensus, which was defined as ≥ 80% agreement on a 4-point Likert scale (strongly agree, agree, disagree, strongly disagree).

RESULTS

Seventeen consensus-driven best practices were identified, with all participants willing to incorporate them into their practice. There were four preoperative interventions: (1, 2) asymptomatic AND symptomatic patients should be referred to urology preoperatively, (3, 4) routine preoperative urine cultures are not necessary for asymptomatic AND symptomatic patients. There were nine intraoperative interventions: (5) patients should receive perioperative cefazolin or an equivalent alternative in the event of allergy, (6) chlorhexidine-based skin preparation is the preferred regimen, (7) saline irrigation should be used intermittently throughout the case, (8) antibiotic-containing irrigation should be used following dural closure, (9) a nonlocking running suture technique should be used for dural closure, (10) dural graft overlay should be used when unable to obtain primary dural closure, (11) an expansile dural graft should be incorporated in cases of lipomyelomeningocele in which primary dural closure does not permit free flow of CSF, (12) paraxial muscles should be closed as a layer separate from the fascia, (13) routine placement of postoperative drains is not necessary. There were three postoperative interventions: (14) postoperative antibiotics are an option and, if given, should be discontinued within 24 hours; (15) patients should remain flat for at least 24 hours postoperatively; (16) routine use of abdominal binders or other compressive devices postoperatively is not necessary. One intervention was prioritized for additional study: (17) further study of additional gram-negative perioperative coverage is needed.

CONCLUSIONS

A modified Delphi technique was used to develop consensus-driven best practices for decreasing wound complications after cTSC surgery. Further study is required to determine if implementation of these practices will lead to reduced complications. Discussion through the course of this study resulted in the initiation of a multicenter study of gram-negative surgical site infections in cTSC surgery.

Restricted access

John R. W. Kestle, Amy Lee, Richard C. E. Anderson, Barbu Gociman, Kamlesh B. Patel, Matthew D. Smyth, Craig Birgfeld, Ian F. Pollack, Jesse A. Goldstein, Mandeep Tamber, Thomas Imahiyerobo, Faizi A. Siddiqi and for the Synostosis Research Group

OBJECTIVE

The authors created a collaborative network, the Synostosis Research Group (SynRG), to facilitate multicenter clinical research on craniosynostosis. To identify common and differing practice patterns within the network, they assessed the SynRG surgeons’ management preferences for sagittal synostosis. These results will be incorporated into planning cooperative studies.

METHODS

The SynRG consists of 12 surgeons at 5 clinical sites. An email survey was distributed to SynRG surgeons in late 2016, and responses were collected through early 2017. Responses were collated and analyzed descriptively.

RESULTS

All of the surgeons—7 plastic/craniofacial surgeons and 5 neurosurgeons—completed the survey. They varied in both experience (1–24 years) and sagittal synostosis case volume in the preceding year (5–45 cases). Three sites routinely perform preoperative CT scans. The preferred surgical technique for children younger than 3 months is strip craniectomy (10/12 surgeons), whereas children older than 6 months are all treated with open cranial vault surgery. Pre-incision cefazolin, preoperative complete blood count panels, and an arterial line were used by most surgeons, but tranexamic acid was used routinely at 3 sites and never at the other 2 sites. Among surgeons performing endoscopic strip craniectomy surgery (SCS), most create a 5-cm-wide craniectomy, whereas 2 surgeons create a 2-cm strip. Four surgeons routinely send endoscopic SCS patients to the intensive care unit after surgery. Two of the 5 sites routinely obtain a CT scan within the 1st year after surgery.

CONCLUSIONS

The SynRG surgeons vary substantially in the use of imaging, the choice of surgical procedure and technique, and follow-up. A collaborative network will provide the opportunity to study different practice patterns, reduce variation, and contribute multicenter data on the management of children with craniosynostosis.

Restricted access

Hannah E. Goldstein, Justin A. Neira, Matei Banu, Philipp R. Aldana, Bruno P. Braga, Douglas L. Brockmeyer, Michael L. DiLuna, Daniel H. Fulkerson, Todd C. Hankinson, Andrew H. Jea, Sean M. Lew, David D. Limbrick, Jonathan Martin, Joshua M. Pahys, Luis F. Rodriguez, Curtis J. Rozzelle, Gerald F. Tuite, Nicholas M. Wetjen and Richard C. E. Anderson

OBJECTIVE

The long-term effects of surgical fusion on the growing subaxial cervical spine are largely unknown. Recent cross-sectional studies have demonstrated that there is continued growth of the cervical spine through the teenage years. The purpose of this multicenter study was to determine the effects of rigid instrumentation and fusion on the growing subaxial cervical spine by investigating vertical growth, cervical alignment, cervical curvature, and adjacent-segment instability over time.

METHODS

A total of 15 centers participated in this multi-institutional retrospective study. Cases involving children less than 16 years of age who underwent rigid instrumentation and fusion of the subaxial cervical spine (C-2 and T-1 inclusive) with at least 1 year of clinical and radiographic follow-up were investigated. Charts were reviewed for clinical data. Postoperative and most recent radiographs, CT, and MR images were used to measure vertical growth and assess alignment and stability.

RESULTS

Eighty-one patients were included in the study, with a mean follow-up of 33 months. Ninety-five percent of patients had complete clinical resolution or significant improvement in symptoms. Postoperative cervical kyphosis was seen in only 4 patients (5%), and none developed a swan-neck deformity, unintended adjacent-level fusion, or instability. Of patients with at least 2 years of follow-up, 62% demonstrated growth across the fusion construct. On average, vertical growth was 79% (4-level constructs), 83% (3-level constructs), or 100% (2-level constructs) of expected growth. When comparing the group with continued vertical growth to the one without growth, there were no statistically significant differences in terms of age, sex, underlying etiology, surgical approach, or number of levels fused.

CONCLUSIONS

Continued vertical growth of the subaxial spine occurs in nearly two-thirds of children after rigid instrumentation and fusion of the subaxial spine. Failure of continued vertical growth is not associated with the patient’s age, sex, underlying etiology, number of levels fused, or surgical approach. Further studies are needed to understand this dichotomy and determine the long-term biomechanical effects of surgery on the growing pediatric cervical spine.

Free access

Brian J. Kelley, Anas A. Minkara, Peter D. Angevine, Michael G. Vitale, Lawrence G. Lenke and Richard C. E. Anderson

OBJECTIVE

The long-term effects of instrumentation and fusion of the occipital-cervical-thoracic spine on spinal growth in young children are poorly understood. To mitigate the effects of this surgery on the growing pediatric spine, the authors report a novel technique used in 4 children with severe cervical-thoracic instability. These patients underwent instrumentation from the occiput to the upper thoracic region for stabilization, but without bone graft at the craniovertebral junction (CVJ). Subsequent surgery was then performed to remove the occipital instrumentation, thereby allowing further growth and increased motion across the CVJ.

METHODS

Three very young children (15, 30, and 30 months old) underwent occipital to thoracic posterior segmental instrumentation due to cervical or upper thoracic dislocation, progressive kyphosis, and myelopathy. The fourth child (10 years old) underwent similar instrumentation for progressive cervical-thoracic scoliosis. Bone graft was placed at and distal to C-2 only. After follow-up CT scans demonstrated posterior arthrodesis without unintended fusion from the occiput to C-2, 3 patients underwent removal of the occipital instrumentation.

RESULTS

Follow-up cervical spine flexion/extension radiographs demonstrated partial restoration of motion at the CVJ. One patient has not had the occipital instrumentation removed yet, because only 4 months have elapsed since her operation.

CONCLUSIONS

Temporary fixation to the occiput provides increased biomechanical stability for spinal stabilization in young children, without permanently eliminating motion and growth at the CVJ. This technique can be considered in children who require longer instrumentation constructs for temporary stabilization, but who only need fusion in more limited areas where spinal instability exists.

Full access

Todd C. Hankinson, Gerald F. Tuite, Dagmara I. Moscoso, Leslie C. Robinson, James C. Torner, David D. Limbrick Jr., Tae Sung Park and Richard C. E. Anderson

OBJECTIVE

The distance to the ventral dura, perpendicular to the basion to C2 line (pB-C2), is commonly employed as a measure describing the anatomy of the craniovertebral junction. However, both the reliability among observers and the clinical utility of this measurement in the context of Chiari malformation Type I (CM-I) have been incompletely determined.

METHODS

Data were reviewed from the first 600 patients enrolled in the Park-Reeves Syringomyelia Research Consortium with CM-I and syringomyelia. Thirty-one cases were identified in which both CT and MRI studies were available for review. Three pediatric neurosurgeons independently determined pB-C2 values using common imaging sequences: MRI (T1-weighted and T2-weighted with and without the inclusion of retro-odontoid soft tissue) and CT. Values were compared and intraclass correlations were calculated among imaging modalities and observers.

RESULTS

Intraclass correlation of pB-C2 demonstrated strong agreement between observers (intraclass correlation coefficient [ICC] range 0.72–0.76). Measurement using T2-weighted MRI with the inclusion of retro-odontoid soft tissue showed no significant difference with measurement using T1-weighted MRI. Measurements using CT or T2-weighted MRI without retro-odontoid soft tissue differed by 1.6 mm (4.69 and 3.09 mm, respectively, p < 0.05) and were significantly shorter than those using the other 2 sequences.

Conclusions pB-C2 can be measured reliably by multiple observers in the context of pediatric CM-I with syringomeyelia. Measurement using T2-weighted MRI excluding retro-odontoid soft tissue closely approximates the value obtained using CT, which may allow for the less frequent use of CT in this patient population. Measurement using T2-weighted MRI including retro-odontoid soft tissue or using T1-weighted MRI yields a more complete assessment of the extent of ventral brainstem compression, but its association with clinical outcomes requires further study.

Full access

Kyle T. Johnson, Wajd N. Al-Holou, Richard C. E. Anderson, Thomas J. Wilson, Tejas Karnati, Mohannad Ibrahim, Hugh J. L. Garton and Cormac O. Maher

OBJECTIVE

Our understanding of pediatric cervical spine development remains incomplete. The purpose of this analysis was to quantitatively define cervical spine growth in a population of children with normal CT scans.

METHODS

A total of 1458 children older than 1 year and younger than 18 years of age who had undergone a cervical spine CT scan at the authors' institution were identified. Subjects were separated by sex and age (in years) into 34 groups. Following this assignment, subjects within each group were randomly selected for inclusion until a target of 15 subjects in each group had been measured. Linear measurements were performed on the midsagittal image of the cervical spine. Twenty-three unique measurements were obtained for each subject.

RESULTS

Data showed that normal vertical growth of the pediatric cervical spine continues up to 18 years of age in boys and 14 years of age in girls. Approximately 75% of the vertical growth occurs throughout the subaxial spine and 25% occurs across the craniovertebral region. The C-2 body is the largest single-segment contributor to vertical growth, but the subaxial vertebral bodies and disc spaces also contribute. Overall vertical growth of the cervical spine throughout childhood is dependent on individual vertebral body growth as well as vertical growth of the disc spaces. The majority of spinal canal diameter growth occurs by 4 years of age.

CONCLUSIONS

The authors' morphometric analyses establish parameters for normal pediatric cervical spine growth up to 18 years of age. These data should be considered when evaluating children for potential surgical intervention and provide a basis of comparison for studies investigating the effects of cervical spine instrumentation and fusion on subsequent growth.

Full access

Travis R. Ladner, Jacob K. Greenberg, Nicole Guerrero, Margaret A. Olsen, Chevis N. Shannon, Chester K. Yarbrough, Jay F. Piccirillo, Richard C. E. Anderson, Neil A. Feldstein, John C. Wellons III, Matthew D. Smyth, Tae Sung Park and David D. Limbrick Jr.

OBJECTIVE

Administrative billing data may facilitate large-scale assessments of treatment outcomes for pediatric Chiari malformation Type I (CM-I). Validated International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) code algorithms for identifying CM-I surgery are critical prerequisites for such studies but are currently only available for adults. The objective of this study was to validate two ICD-9-CM code algorithms using hospital billing data to identify pediatric patients undergoing CM-I decompression surgery.

METHODS

The authors retrospectively analyzed the validity of two ICD-9-CM code algorithms for identifying pediatric CM-I decompression surgery performed at 3 academic medical centers between 2001 and 2013. Algorithm 1 included any discharge diagnosis code of 348.4 (CM-I), as well as a procedure code of 01.24 (cranial decompression) or 03.09 (spinal decompression or laminectomy). Algorithm 2 restricted this group to the subset of patients with a primary discharge diagnosis of 348.4. The positive predictive value (PPV) and sensitivity of each algorithm were calculated.

RESULTS

Among 625 first-time admissions identified by Algorithm 1, the overall PPV for CM-I decompression was 92%. Among the 581 admissions identified by Algorithm 2, the PPV was 97%. The PPV for Algorithm 1 was lower in one center (84%) compared with the other centers (93%–94%), whereas the PPV of Algorithm 2 remained high (96%–98%) across all subgroups. The sensitivity of Algorithms 1 (91%) and 2 (89%) was very good and remained so across subgroups (82%–97%).

CONCLUSIONS

An ICD-9-CM algorithm requiring a primary diagnosis of CM-I has excellent PPV and very good sensitivity for identifying CM-I decompression surgery in pediatric patients. These results establish a basis for utilizing administrative billing data to assess pediatric CM-I treatment outcomes.

Full access

Jacob K. Greenberg, Margaret A. Olsen, Chester K. Yarbrough, Travis R. Ladner, Chevis N. Shannon, Jay F. Piccirillo, Richard C. E. Anderson, John C. Wellons III, Matthew D. Smyth, Tae Sung Park and David D. Limbrick Jr.

OBJECTIVE

Chiari malformation Type I (CM-I) is a common and often debilitating pediatric neurological disease. However, efforts to guide preoperative counseling and improve outcomes research are impeded by reliance on small, single-center studies. Consequently, the objective of this study was to investigate CM-I surgical outcomes using population-level administrative billing data.

METHODS

The authors used Healthcare Cost and Utilization Project State Inpatient Databases (SID) to study pediatric patients undergoing surgical decompression for CM-I from 2004 to 2010 in California, Florida, and New York. They assessed the prevalence and influence of preoperative complex chronic conditions (CCC) among included patients. Outcomes included medical and surgical complications within 90 days of treatment. Multivariate logistic regression was used to identify risk factors for surgical complications.

RESULTS

A total of 936 pediatric CM-I surgeries were identified for the study period. Overall, 29.2% of patients were diagnosed with syringomyelia and 13.7% were diagnosed with scoliosis. Aside from syringomyelia and scoliosis, 30.3% of patients had at least 1 CCC, most commonly neuromuscular (15.2%) or congenital or genetic (8.4%) disease. Medical complications were uncommon, occurring in 2.6% of patients. By comparison, surgical complications were diagnosed in 12.7% of patients and typically included shunt-related complications (4.0%), meningitis (3.7%), and other neurosurgery-specific complications (7.4%). Major complications (e.g., stroke or myocardial infarction) occurred in 1.4% of patients. Among children with CCCs, only comorbid hydrocephalus was associated with a significantly increased risk of surgical complications (OR 4.5, 95% CI 2.5–8.1).

CONCLUSIONS

Approximately 1 in 8 pediatric CM-I patients experienced a surgical complication, whereas medical complications were rare. Although CCCs were common in pediatric CM-I patients, only hydrocephalus was independently associated with increased risk of surgical events. These results may inform patient counseling and guide future research efforts.

Full access

Benjamin C. Kennedy, Randy S. D’Amico, Brett E. Youngerman, Michael M. McDowell, Kristopher G. Hooten, Daniel Couture, Andrew Jea, Jeffrey Leonard, Sean M. Lew, David W. Pincus, Luis Rodriguez, Gerald F. Tuite, Michael L. Diluna, Douglas L. Brockmeyer, Richard C. E. Anderson and Pediatric Craniocervical Society

OBJECT

The long-term consequences of atlantoaxial (AA) and occipitocervical (OC) fusion and instrumentation in young children are unknown. Anecdotal reports have raised concerns regarding altered growth and alignment of the cervical spine after surgical intervention. The purpose of this study was to determine the long-term effects of these surgeries on the growth and alignment of the maturing spine.

METHODS

A multiinstitutional retrospective chart review was conducted for patients less than or equal to 6 years of age who underwent OC or AA fusion with rigid instrumentation at 9 participating centers. All patients had at least 3 years of clinical and radiographic follow-up data and radiographically confirmed fusion. Preoperative, immediate postoperative, and most recent follow-up radiographs and/or CT scans were evaluated to assess changes in spinal growth and alignment.

RESULTS

Forty children (9 who underwent AA fusion and 31 who underwent OC fusion) were included in the study (mean follow-up duration 56 months). The mean vertical growth over the fused levels in the AA fusion patients represented 30% of the growth of the cervical spine (range 10%–50%). Three different vertical growth patterns of the fusion construct developed among the 31 OC fusion patients during the follow-up period: 1) 16 patients had substantial growth (13%–46% of the total growth of the cervical spine); 2) 9 patients had no meaningful growth; and 3) 6 patients, most of whom presented with a distracted atlantooccipital dislocation, had a decrease in the height of the fused levels (range 7–23 mm). Regarding spinal alignment, 85% (34/40) of the patients had good alignment at follow-up, with straight or mildly lordotic cervical curvatures. In 1 AA fusion patient (11%) and 5 OC fusion patients (16%), we observed new hyperlordosis (range 43°–62°). There were no cases of new kyphosis or swan-neck deformity, evidence of subaxial instability, or unintended subaxial fusion. No preoperative predictors of these growth patterns or alignment were evident.

CONCLUSIONS

These results demonstrate that most young children undergoing AA and OC fusion with rigid internal fixation continue to have good cervical alignment and continued growth within the fused levels during a prolonged follow-up period. However, some variability in vertical growth and alignment exists, highlighting the need to continue close long-term follow-up.