Browse

You are looking at 1 - 10 of 112 items for

  • All content x
  • By Author: Ames, Christopher P. x
Clear All
Restricted access

Themistocles S. Protopsaltis, Nicholas Stekas, Justin S. Smith, Alexandra Soroceanu, Renaud Lafage, Alan H. Daniels, Han Jo Kim, Peter G. Passias, Gregory M. Mundis Jr., Eric O. Klineberg, D. Kojo Hamilton, Munish Gupta, Virginie Lafage, Robert A. Hart, Frank Schwab, Douglas C. Burton, Shay Bess, Christopher I. Shaffrey, and Christopher P. Ames

OBJECTIVE

Cervical deformity (CD) patients have severe disability and poor health status. However, little is known about how patients with rigid CD compare with those with flexible CD. The main objectives of this study were to 1) assess whether patients with rigid CD have worse baseline alignment and therefore require more aggressive surgical corrections and 2) determine whether patients with rigid CD have similar postoperative outcomes as those with flexible CD.

METHODS

This is a retrospective review of a prospective, multicenter CD database. Rigid CD was defined as cervical lordosis (CL) change < 10° between flexion and extension radiographs, and flexible CD was defined as a CL change ≥ 10°. Patients with rigid CD were compared with those with flexible CD in terms of cervical alignment and health-related quality of life (HRQOL) at baseline and at multiple postoperative time points. The patients were also compared in terms of surgical and intraoperative factors such as operative time, blood loss, and number of levels fused.

RESULTS

A total of 127 patients met inclusion criteria (32 with rigid and 95 with flexible CD, 63.4% of whom were females; mean age 60.8 years; mean BMI 27.4); 47.2% of cases were revisions. Rigid CD was associated with worse preoperative alignment in terms of T1 slope minus CL, T1 slope, C2–7 sagittal vertical axis (cSVA), and C2 slope (C2S; all p < 0.05). Postoperatively, patients with rigid CD had an increased mean C2S (29.1° vs 22.2°) at 3 months and increased cSVA (47.1 mm vs 37.5 mm) at 1 year (p < 0.05) compared with those with flexible CD. Patients with rigid CD had more posterior levels fused (9.5 vs 6.3), fewer anterior levels fused (1 vs 2.0), greater blood loss (1036.7 mL vs 698.5 mL), more 3-column osteotomies (40.6% vs 12.6%), greater total osteotomy grade (6.5 vs 4.5), and mean osteotomy grade per level (3.3 vs 2.1) (p < 0.05 for all). There were no significant differences in baseline HRQOL scores, the rate of distal junctional kyphosis, or major/minor complications between patients with rigid and flexible CD. Both rigid and flexible CD patients reported significant improvements from baseline to 1 year according to the numeric rating scale for the neck (−2.4 and −2.7, respectively), Neck Disability Index (−8.4 and −13.3, respectively), modified Japanese Orthopaedic Association score (0.1 and 0.6), and EQ-5D (0.01 and 0.05) (p < 0.05). However, HRQOL changes from baseline to 1 year did not differ between rigid and flexible CD patients.

CONCLUSIONS

Patients with rigid CD have worse baseline cervical malalignment compared with those with flexible CD but do not significantly differ in terms of baseline disability. Rigid CD was associated with more invasive surgery and more aggressive corrections, resulting in increased operative time and blood loss. Despite more extensive surgeries, rigid CD patients had equivalent improvements in HRQOL compared with flexible CD patients. This study quantifies the importance of analyzing flexion-extension images, creating a prognostic tool for surgeons planning CD correction, and counseling patients who are considering CD surgery.

Restricted access

Thomas J. Buell, Justin S. Smith, Christopher I. Shaffrey, Han Jo Kim, Eric O. Klineberg, Virginie Lafage, Renaud Lafage, Themistocles S. Protopsaltis, Peter G. Passias, Gregory M. Mundis Jr., Robert K. Eastlack, Vedat Deviren, Michael P. Kelly, Alan H. Daniels, Jeffrey L. Gum, Alex Soroceanu, D. Kojo Hamilton, Munish C. Gupta, Douglas C. Burton, Richard A. Hostin, Khaled M. Kebaish, Robert A. Hart, Frank J. Schwab, Shay Bess, Christopher P. Ames, and the International Spine Study Group (ISSG)

OBJECTIVE

The impact of global coronal malalignment (GCM; C7 plumb line–midsacral offset) on adult spinal deformity (ASD) treatment outcomes is unclear. Here, the authors’ primary objective was to assess surgical outcomes and complications in patients with severe GCM, with a secondary aim of investigating potential surgical target coronal thresholds for optimal outcomes.

METHODS

This is a retrospective analysis of a prospective multicenter database. Operative patients with severe GCM (≥ 1 SD above the mean) and a minimum 2-year follow-up were identified. Demographic, surgical, radiographic, health-related quality of life (HRQOL), and complications data were analyzed.

RESULTS

Of 691 potentially eligible operative patients (mean GCM 4 ± 3 cm), 80 met the criteria for severe GCM ≥ 7 cm. Of these, 62 (78%; mean age 63.7 ± 10.7 years, 81% women) had a minimum 2-year follow-up (mean follow-up 3.3 ± 1.1 years). The mean ASD–Frailty Index was 3.9 ± 1.5 (frail), 50% had undergone prior fusion, and 81% had concurrent severe sagittal spinopelvic deformity with GCM and C7–S1 sagittal vertical axis (SVA) positively correlated (r = 0.313, p = 0.015). Surgical characteristics included posterior-only (58%) versus anterior-posterior (42%) approach, mean fusion of 13.2 ± 3.8 levels, iliac fixation (90%), 3-column osteotomy (36%), operative duration of 8.3 ± 3.0 hours, and estimated blood loss of 2.3 ± 1.7 L. Final alignment and HRQOL significantly improved (p < 0.01): GCM, 11 to 4 cm; maximum coronal Cobb angle, 43° to 20°; SVA, 13 to 4 cm; pelvic tilt, 29° to 23°; pelvic incidence–lumbar lordosis mismatch, 31° to 5°; Oswestry Disability Index, 51 to 37; physical component summary of SF-36 (PCS), 29 to 37; 22-Item Scoliosis Research Society Patient Questionnaire (SRS-22r) Total, 2.6 to 3.5; and numeric rating scale score for back and leg pain, 7 to 4 and 5 to 3, respectively. Residual GCM ≥ 3 cm was associated with worse SRS-22r Appearance (p = 0.04) and SRS-22r Satisfaction (p = 0.02). The minimal clinically important difference and/or substantial clinical benefit (MCID/SCB) was met in 43%–83% (highest for SRS-22r Appearance [MCID 83%] and PCS [SCB 53%]). The severity of baseline GCM (≥ 2 SD above the mean) significantly impacted postoperative SRS-22r Satisfaction and MCID/SCB improvement for PCS. No significant partial correlations were demonstrated between GCM or SVA correction and HRQOL improvement. There were 89 total complications (34 minor and 55 major), 45 (73%) patients with ≥ 1 complication (most commonly rod fracture [19%] and proximal junctional kyphosis [PJK; 18%]), and 34 reoperations in 22 (35%) patients (most commonly for rod fracture and PJK).

CONCLUSIONS

Study results demonstrated that ASD surgery in patients with substantial GCM was associated with significant radiographic and HRQOL improvement despite high complication rates. MCID improvement was highest for SRS-22r Appearance/Self-Image. A residual GCM ≥ 3 cm was associated with a worse outcome, suggesting a potential coronal realignment target threshold to assist surgical planning.

Restricted access

Dominic Amara, Praveen V. Mummaneni, Shane Burch, Vedat Deviren, Christopher P. Ames, Bobby Tay, Sigurd H. Berven, and Dean Chou

OBJECTIVE

Radiculopathy from the fractional curve, usually from L3 to S1, can create severe disability. However, treatment methods of the curve vary. The authors evaluated the effect of adding more levels of interbody fusion during treatment of the fractional curve.

METHODS

A single-institution retrospective review of adult patients treated for scoliosis between 2006 and 2016 was performed. Inclusion criteria were as follows: fractional curves from L3 to S1 > 10°, ipsilateral radicular symptoms concordant on the fractional curve concavity side, patients who underwent at least 1 interbody fusion at the level of the fractional curve, and a minimum 1-year follow-up. Primary outcomes included changes in fractional curve correction, lumbar lordosis change, pelvic incidence − lumbar lordosis mismatch change, scoliosis major curve correction, and rates of revision surgery and postoperative complications. Secondary analysis compared the same outcomes among patients undergoing posterior, anterior, and lateral approaches for their interbody fusion.

RESULTS

A total of 78 patients were included. There were no significant differences in age, sex, BMI, prior surgery, fractional curve degree, pelvic tilt, pelvic incidence, pelvic incidence − lumbar lordosis mismatch, sagittal vertical axis, coronal balance, scoliotic curve magnitude, proportion of patients undergoing an osteotomy, or average number of levels fused among the groups. The mean follow-up was 35.8 months (range 12–150 months). Patients undergoing more levels of interbody fusion had more fractional curve correction (7.4° vs 12.3° vs 12.1° for 1, 2, and 3 levels; p = 0.009); greater increase in lumbar lordosis (−1.8° vs 6.2° vs 13.7°, p = 0.003); and more scoliosis major curve correction (13.0° vs 13.7° vs 24.4°, p = 0.01). There were no statistically significant differences among the groups with regard to postoperative complications (overall rate 47.4%, p = 0.85) or need for revision surgery (overall rate 30.7%, p = 0.25). In the secondary analysis, patients undergoing anterior lumbar interbody fusion (ALIF) had a greater increase in lumbar lordosis (9.1° vs −0.87° for ALIF vs transforaminal lumbar interbody fusion [TLIF], p = 0.028), but also higher revision surgery rates unrelated to adjacent-segment pathology (25% vs 4.3%, p = 0.046). Higher ALIF revision surgery rates were driven by rod fracture in the majority (55%) of cases.

CONCLUSIONS

More levels of interbody fusion resulted in increased lordosis, scoliosis curve correction, and fractional curve correction. However, additional levels of interbody fusion up to 3 levels did not result in more postoperative complications or morbidity. ALIF resulted in a greater lumbar lordosis increase than TLIF, but ALIF had higher revision surgery rates.

Restricted access

Rushikesh S. Joshi, Darryl Lau, Alexander F. Haddad, Vedat Deviren, and Christopher P. Ames

OBJECTIVE

Correction of rigid cervical deformities can be associated with high complication rates and result in prolonged intensive care unit (ICU) and hospital stays. In this study, the authors aimed to examine the risk factors contributing to length of stay (LOS) in both the hospital and ICU following adult cervical deformity (ACD) surgery and to identify severe adverse events that occurred in this setting.

METHODS

A retrospective review of ACD patients who underwent posterior-based osteotomies for deformity correction from 2010 to 2019 was performed. Inclusion criteria were cervical kyphosis > 20° and/or cervical sagittal vertical axis (cSVA) > 4 cm. Multivariate analysis was used to identify risk factors independently associated with ICU and hospital LOS.

RESULTS

A total of 107 patients were included. The mean age was 63.5 years, and 61.7% were female. Over half (52.3%) underwent 3-column osteotomies, while 47.7% underwent posterior column osteotomies. There was significant correction of all cervical parameters: cSVA (6.0 vs 3.6 cm, p < 0.001), cervical lordosis (8.2° vs −5.3°, p < 0.001), cervical scoliosis (6.5° vs 2.2°, p < 0.001), and T1-slope (40.2° vs 34.5°, p < 0.001). There were also reciprocal changes to the distal spine: thoracic kyphosis (54.4° vs 46.4°, p < 0.001), lumbar lordosis (49.9° vs 45.8°, p = 0.003), and thoracolumbar scoliosis (13.9° vs 11.1°, p = 0.009). Overall, 4 patients (3.7%) suffered aspiration-related complications, 3 patients (2.8%) experienced dysphagia requiring a feeding tube, and 4 patients (3.7%) had compromised airways, with 1 resulting in death. The mean ICU and hospital LOS were 2.8 days and 7.9 days, respectively. Multivariate analysis identified three factors independently associated with longer ICU LOS: female sex (3.0 vs 2.4 days, p = 0.004), ≥ 12 segments fused (3.5 vs 1.9 days, p = 0.002), and postoperative complication (4.0 vs 1.9 days, p = 0.017). These same factors were independently associated with longer hospital LOS as well: female sex (8.3 vs 7.3 days, p = 0.013), ≥ 12 segments fused (9.4 vs 6.2 days, p = 0.001), and complication (9.7 vs 6.7 days, p = 0.026).

CONCLUSIONS

Posterior-based osteotomies are very effective for the correction of ACD, but postoperative hospital stays are relatively longer than those following surgery for degenerative disease. Risk factors for prolonged ICU and hospital LOS consist of both nonmodifiable (female sex) and modifiable (≥ 12 segments fused and presence of complication) risk factors. Additional multicenter prospective studies will be needed to validate these findings.

Restricted access

Yoji Ogura, Jeffrey L. Gum, Alex Soroceanu, Alan H. Daniels, Breton Line, Themistocles Protopsaltis, Richard A. Hostin, Peter G. Passias, Douglas C. Burton, Justin S. Smith, Christopher I. Shaffrey, Virginie Lafage, Renaud Lafage, Eric O. Klineberg, Han Jo Kim, Andrew Harris, Khaled Kebaish, Frank Schwab, Shay Bess, Christopher P. Ames, Leah Y. Carreon, and the International Spine Study Group (ISSG)

OBJECTIVE

The shared decision-making (SDM) process provides an opportunity to answer frequently asked questions (FAQs). The authors aimed to present a concise list of answers to FAQs to aid in SDM for adult spinal deformity (ASD) surgery.

METHODS

From a prospective, multicenter ASD database, patients enrolled between 2008 and 2016 who underwent fusions of 5 or more levels with a minimum 2-year follow-up were included. All deformity types were included to provide general applicability. The authors compiled a list of FAQs from patients undergoing ASD surgery and used a retrospective analysis to provide answers. All responses are reported as either the means or the proportions reaching the minimal clinically important difference at the 2-year follow-up interval.

RESULTS

Of 689 patients with ASD who were eligible for 2-year follow-up, 521 (76%) had health-related quality-of-life scores available at the time of that follow-up. The mean age at the initial surgery was 58.2 years, and 78% of patients were female. The majority (73%) underwent surgery with a posterior-only approach. The mean number of fused levels was 12.2. Revision surgery accounted for 48% of patients. The authors answered 12 FAQs as follows:

1. Will my pain improve? Back and leg pain will both be reduced by approximately 50%.

2. Will my activity level improve? Approximately 65% of patients feel improvement in their activity level.

3. Will I feel better about myself? More than 70% of patients feel improvement in their appearance.

4. Is there a chance I will get worse? 4.1% feel worse at 2 years postoperatively.

5. What is the likelihood I will have a complication? 67.8% will have a major or minor complication, with 47.8% having a major complication.

6. Will I need another surgery? 25.0% will have a reoperation within 2 years.

7. Will I regret having surgery? 6.5% would not choose the same treatment.

8. Will I get a blood transfusion? 73.7% require a blood transfusion.

9. How long will I stay in the hospital? You need to stay 8.1 days on average.

10. Will I have to go to the ICU? 76.0% will have to go to the ICU.

11. Will I be able to return to work? More than 70% will be working at 1 year postoperatively.

12. Will I be taller after surgery? You will be 1.1 cm taller on average.

CONCLUSIONS

The above list provides concise, practical answers to FAQs encountered in the SDM process while counseling patients for ASD surgery.

Free access

Michael M. Safaee, Alexander Tenorio, Joseph A. Osorio, Winward Choy, Dominic Amara, Lillian Lai, Serena S. Hu, Bobby Tay, Shane Burch, Sigurd H. Berven, Vedat Deviren, Sanjay S. Dhall, Dean Chou, Praveen V. Mummaneni, Charles M. Eichler, Christopher P. Ames, and Aaron J. Clark

OBJECTIVE

Anterior lumbar interbody fusion (ALIF) is a powerful technique that provides wide access to the disc space and allows for large lordotic grafts. When used with posterior spinal fusion (PSF), the procedures are often staged within the same hospital admission. There are limited data on the perioperative risk profile of ALIF-first versus PSF-first circumferential fusions performed within the same hospital admission. In an effort to understand whether these procedures are associated with different perioperative complication profiles, the authors performed a retrospective review of their institutional experience in adult patients who had undergone circumferential lumbar fusions.

METHODS

The electronic medicals records of patients who had undergone ALIF and PSF on separate days within the same hospital admission at a single academic center were retrospectively analyzed. Patients carrying a diagnosis of tumor, infection, or traumatic fracture were excluded. Demographics, surgical characteristics, and perioperative complications were collected and assessed.

RESULTS

A total of 373 patients, 217 of them women (58.2%), met the inclusion criteria. The mean age of the study cohort was 60 years. Surgical indications were as follows: degenerative disease or spondylolisthesis, 171 (45.8%); adult deformity, 168 (45.0%); and pseudarthrosis, 34 (9.1%). The majority of patients underwent ALIF first (321 [86.1%]) with a mean time of 2.5 days between stages. The mean number of levels fused was 2.1 for ALIF and 6.8 for PSF. In a comparison of ALIF-first to PSF-first cases, there were no major differences in demographics or surgical characteristics. Rates of intraoperative complications including venous injury were not significantly different between the two groups. The rates of postoperative ileus (11.8% vs 5.8%, p = 0.194) and ALIF-related wound complications (9.0% vs 3.8%, p = 0.283) were slightly higher in the ALIF-first group, although the differences did not reach statistical significance. Rates of other perioperative complications were no different.

CONCLUSIONS

In patients undergoing staged circumferential fusion with ALIF and PSF, there was no statistically significant difference in the rate of perioperative complications when comparing ALIF-first to PSF-first surgeries.

Restricted access

Darryl Lau, Alexander F. Haddad, Vedat Deviren, and Christopher P. Ames

OBJECTIVE

Rigid multiplanar thoracolumbar adult spinal deformity (ASD) cases are challenging and many require a 3-column osteotomy (3CO), specifically asymmetrical pedicle subtraction osteotomy (APSO). The outcomes and additional risks of performing APSO for the correction of concurrent sagittal-coronal deformity have yet to be adequately studied.

METHODS

The authors performed a retrospective review of all ASD patients who underwent 3CO during the period from 2006 to 2019. All cases involved either isolated sagittal deformity (patients underwent standard PSO) or concurrent sagittal-coronal deformity (coronal vertical axis [CVA] ≥ 4.0 cm; patients underwent APSO). Perioperative and 2-year follow-up outcomes were compared between patients with isolated sagittal imbalance who underwent PSO and those with concurrent sagittal-coronal imbalance who underwent APSO.

RESULTS

A total of 390 patients were included: 338 who underwent PSO and 52 who underwent APSO. The mean patient age was 64.6 years, and 65.1% of patients were female. APSO patients required significantly more fusions with upper instrumented vertebrae (UIV) in the upper thoracic spine (63.5% vs 43.3%, p = 0.007). Radiographically, APSO patients had greater deformity with more severe preoperative sagittal and coronal imbalance: sagittal vertical axis (SVA) 13.0 versus 10.7 cm (p = 0.042) and CVA 6.1 versus 1.2 cm (p < 0.001). In APSO cases, significant correction and normalization were achieved (SVA 13.0–3.1 cm, CVA 6.1–2.0 cm, lumbar lordosis [LL] 26.3°–49.4°, pelvic tilt [PT] 38.0°–20.4°, and scoliosis 25.0°–10.4°, p < 0.001). The overall perioperative complication rate was 34.9%. There were no significant differences between PSO and APSO patients in rates of complications (overall 33.7% vs 42.3%, p = 0.227; neurological 5.9% vs 3.9%, p = 0.547; medical 20.7% vs 25.0%, p = 0.482; and surgical 6.5% vs 11.5%, p = 0.191, respectively). However, the APSO group required significantly longer stays in the ICU (3.1 vs 2.3 days, p = 0.047) and hospital (10.8 vs 8.3 days, p = 0.002). At the 2-year follow-up, there were no significant differences in mechanical complications, including proximal junctional kyphosis (p = 0.352), pseudarthrosis (p = 0.980), rod fracture (p = 0.852), and reoperation (p = 0.600).

CONCLUSIONS

ASD patients with significant coronal imbalance often have severe concurrent sagittal deformity. APSO is a powerful and effective technique to achieve multiplanar correction without higher risk of morbidity and complications compared with PSO for sagittal imbalance. However, APSO is associated with slightly longer ICU and hospital stays.

Free access

Ping-Guo Duan, Praveen V. Mummaneni, Joshua Rivera, Jeremy M. V. Guinn, Minghao Wang, Zhuo Xi, Bo Li, Hao-Hua Wu, Christopher P. Ames, Shane Burch, Sigurd H. Berven, and Dean Chou

OBJECTIVE

Patients undergoing long-segment fusions from the lower thoracic (LT) spine to the sacrum for adult spinal deformity (ASD) correction are at risk for proximal junctional kyphosis (PJK). One mechanism of PJK is fracture of the upper instrumented vertebra (UIV) or higher (UIV+1), which may be related to bone mineral density (BMD). Because Hounsfield units (HUs) on CT correlate with BMD, the authors evaluated whether HU values were correlated with PJK after long fusions for ASD.

METHODS

The authors performed a retrospective study of patients older than 50 years who had undergone ASD correction from the LT spine to the sacrum in the period from October 2007 to January 2018 and had a minimum 2-year follow-up. Demographic and spinopelvic parameters were measured. HU values were measured on preoperative CT at the UIV, UIV+1, and UIV+2 (2 levels above the UIV) levels and were assessed for correlations with PJK.

RESULTS

The records of 127 patients were reviewed. Fifty-four patients (19 males and 35 females) with a mean age of 64.91 years and mean follow-up of 3.19 years met the study inclusion criteria; there were 29 patients with PJK and 25 patients without. There was no statistically significant difference in demographics or follow-up between these two groups. Neither was there a difference between the groups with regard to postoperative pelvic incidence (PI), sacral slope (SS), lumbar lordosis (LL), PI minus LL (PI-LL), thoracic kyphosis (TK), or sagittal vertical axis (SVA; all p > 0.05). Postoperative pelvic tilt (p = 0.003) and T1 pelvic angle (p = 0.014) were significantly higher in patients with PJK than in those without. Preoperative HUs at UIV, UIV+1, and UIV+2 were 120.41, 124.52, and 129.28 in the patients with PJK, respectively, and 152.80, 155.96, and 160.00 in the patients without PJK, respectively (p = 0.011, 0.02, and 0.018). Three receiver operating characteristic (ROC) curves for preoperative HU values at the UIV, UIV+1, and UIV+2 as a predictor for PJK were established, with areas under the ROC curve of 0.710 (95% CI 0.574–0.847), 0.679 (95% CI 0.536–0.821), and 0.681 (95% CI 0.539–0.824), respectively. The optimal HU value by Youden index was 104 HU at the UIV (sensitivity 0.840, specificity 0.517), 113 HU at the UIV+1 (sensitivity 0.720, specificity 0.517), and 110 HU at the UIV+2 (sensitivity 0.880, specificity 0.448).

CONCLUSIONS

In patients undergoing long-segment fusions from the LT spine to the sacrum for ASD, PJK was associated with lower HU values on CT at the UIV, UIV+1, and UIV+2. The measurement of HU values on preoperative CTs may be a useful adjunct for ASD surgery planning.

Restricted access

Darryl Lau, Alexander F. Haddad, Vedat Deviren, and Christopher P. Ames

OBJECTIVE

There is an increased recognition of disproportional lumbar lordosis (LL) and artificially high pelvic incidence (PI) as a cause for positive sagittal imbalance and spinal pelvic mismatch. For such cases, a sacral pedicle subtraction osteotomy (PSO) may be indicated, although its morbidity is not well described. In this study, the authors evaluate the specific complication risks associated with S1 PSO.

METHODS

A retrospective review of all adult spinal deformity patients who underwent a 3-column osteotomy (3CO) for thoracolumbar deformity from 2006 to 2019 was performed. Demographic, clinical baseline, and radiographic parameters were recorded. The primary outcome of interest was perioperative complications (surgical, neurological, and medical). Secondary outcomes of interest included case length, blood loss, and length of stay. Multivariate analysis was used to assess the risk of S1 PSO compared with 3CO at other levels.

RESULTS

A total of 405 patients underwent 3CO in the following locations: thoracic (n = 55), L1 (n = 25), L2 (n = 29), L3 (n = 141), L4 (n = 129), L5 (n = 17), and S1 (n = 9). After S1 PSO, there were significant improvements in the sagittal vertical axis (14.8 cm vs 6.7 cm, p = 0.004) and PI-LL mismatch (31.7° vs 9.6°, p = 0.025) due to decreased PI (80.3° vs 65.9°, p = 0.006). LL remained unchanged (48.7° vs 57.8°, p = 0.360). The overall complication rate was 27.4%; the surgical, neurological, and medical complication rates were 7.7%, 6.2%, and 20.0%, respectively. S1 PSO was associated with significantly higher rates of overall complications: thoracic (29.1%), L1 (32.0%), L2 (31.0%), L3 (19.9%), L4 (32.6%), L5 (11.8%), and S1 (66.7%) (p = 0.018). Similarly, an S1 PSO was associated with significantly higher rates of surgical (thoracic [9.1%], L1 [4.0%], L2 [6.9%], L3 [5.7%], L4 [10.9%], L5 [5.9%], and S1 [44.4%], p = 0.006) and neurological (thoracic [9.1%], L1 [0.0%], L2 [6.9%], L3 [2.8%], L4 [7.0%], L5 [5.9%], and S1 [44.4%], p < 0.001) complications. On multivariate analysis, S1 PSO was independently associated with higher odds of overall (OR 7.93, p = 0.013), surgical (OR 20.66, p = 0.010), and neurological (OR 14.75, p = 0.007) complications.

CONCLUSIONS

S1 PSO is a powerful technique for correction of rigid sagittal imbalance due to an artificially elevated PI in patients with rigid high-grade spondylolisthesis and chronic sacral fractures. However, the technique and intraoperative corrective maneuvers are challenging and associated with high surgical and neurological complications. Additional investigations into the learning curve associated with S1 PSO and complication prevention are needed.

Restricted access

Justin S. Smith, Thomas J. Buell, Christopher I. Shaffrey, Han Jo Kim, Eric Klineberg, Themistocles Protopsaltis, Peter Passias, Gregory M. Mundis Jr., Robert Eastlack, Vedat Deviren, Michael P. Kelly, Alan H. Daniels, Jeffrey L. Gum, Alex Soroceanu, Munish Gupta, Doug Burton, Richard Hostin, Robert Hart, Virginie Lafage, Renaud Lafage, Frank J. Schwab, Shay Bess, and Christopher P. Ames

OBJECTIVE

Although surgical treatment can provide significant improvement of symptomatic adult cervical spine deformity (ACSD), few reports have focused on the associated complications. The objective of this study was to assess complication rates at a minimum 1-year follow-up based on a prospective multicenter series of ACSD patients treated surgically.

METHODS

A prospective multicenter database of consecutive operative ACSD patients was reviewed for perioperative (< 30 days), early (30–90 days), and delayed (> 90 days) complications with a minimum 1-year follow-up. Enrollment required at least 1 of the following: cervical kyphosis > 10°, cervical scoliosis > 10°, C2–7 sagittal vertical axis > 4 cm, or chin-brow vertical angle > 25°.

RESULTS

Of 167 patients, 133 (80%, mean age 62 years, 62% women) had a minimum 1-year follow-up (mean 1.8 years). The most common diagnoses were degenerative (45%) and iatrogenic (17%) kyphosis. Almost 40% of patients were active or past smokers, 17% had osteoporosis, and 84% had at least 1 comorbidity. The mean baseline Neck Disability Index and modified Japanese Orthopaedic Association scores were 47 and 13.6, respectively. Surgical approaches were anterior-only (18%), posterior-only (47%), and combined (35%). A total of 132 complications were reported (54 minor and 78 major), and 74 (56%) patients had at least 1 complication. The most common complications included dysphagia (11%), distal junctional kyphosis (9%), respiratory failure (6%), deep wound infection (6%), new nerve root motor deficit (5%), and new sensory deficit (5%). A total of 4 deaths occurred that were potentially related to surgery, 2 prior to 1-year follow-up (1 cardiopulmonary and 1 due to obstructive sleep apnea and narcotic use) and 2 beyond 1-year follow-up (both cardiopulmonary and associated with revision procedures). Twenty-six reoperations were performed in 23 (17%) patients, with the most common indications of deep wound infection (n = 8), DJK (n = 7), and neurological deficit (n = 6). Although anterior-only procedures had a trend toward lower overall (42%) and major (21%) complications, rates were not significantly different from posterior-only (57% and 33%, respectively) or combined (61% and 37%, respectively) approaches (p = 0.29 and p = 0.38, respectively).

CONCLUSIONS

This report provides benchmark rates for ACSD surgery complications at a minimum 1-year (mean 1.8 years) follow-up. The marked health and functional impact of ACSD, the frail population it affects, and the high rates of surgical complications necessitate a careful risk-benefit assessment when contemplating surgery. Collectively, these findings provide benchmarks for complication rates and may prove useful for patient counseling and efforts to improve the safety of care.