Browse

You are looking at 1 - 1 of 1 items for

  • By Author: Al-Uzri, Amira x
Clear All
Restricted access

Nathan R. Selden, Amira Al-Uzri, Stephen L. Huhn, Thomas K. Koch, Darryn M. Sikora, Mina D. Nguyen-Driver, Daniel J. Guillaume, Jeffrey L. Koh, Sakir H. Gultekin, James C. Anderson, Hannes Vogel, Trenna L. Sutcliffe, Yakop Jacobs and Robert D. Steiner

Object

Infantile and late-infantile neuronal ceroid lipofuscinoses (NCLs) are invariably fatal lysosomal storage diseases associated with defects in lysosomal enzyme palmitoyl-protein thioesterase 1 (PPT-1) or tripeptidyl peptidase 1 (TPP1) activity. Previous preclinical studies have demonstrated that human CNS stem cells (HuCNS-SCs) produce both PPT-1 and TPP1 and result in donor cell engraftment and reduced accumulation of storage material in the brain when tested in an NCL mouse model.

Methods

HuCNS-SC transplantation was tested in an open-label dose-escalation Phase I clinical trial as a potential treatment for infantile and late-infantile NCL. Study design included direct neurosurgical transplantation of allogeneic HuCNS-SCs into the cerebral hemispheres and lateral ventricles accompanied by 12 months of immunosuppression.

Results

Six children with either the infantile or late-infantile forms of NCL underwent low- (3 patients) and high- (3 patients) dose transplantation of HuCNS-SCs followed by immunosuppression. The surgery, immunosuppression, and cell transplantation were well tolerated. Adverse events following transplantation were consistent with the underlying disease, and none were directly attributed to the donor cells. Observations regarding efficacy of the intervention were limited by the enrollment criteria requiring that patients be in advanced stages of disease.

Conclusions

This study represents the first-in-human clinical trial involving transplantation of a purified population of human neural stem cells for a neurodegenerative disorder. The feasibility of this approach and absence of transplantation-related serious adverse events support further exploration of HuCNS-SC transplantation as a potential treatment for select subtypes of NCL, and possibly for other neurodegenerative disorders. Clinical trial registration no.: NCT00337636 (ClinicalTrials.gov).