Browse

You are looking at 1 - 10 of 27 items for

  • By Author: Adler, John R. x
Clear All
Free access

L. Dade Lunsford, Veronica Chiang, John R. Adler, Jason Sheehan, William Friedman and Douglas Kondziolka

Restricted access

M. Peter Heilbrun and John R. Adler Jr.

Neurosurgeons, radiation oncologists, and, increasingly, other surgical specialists recognize that radiosurgery is an important tool for managing selected disorders throughout the body. The partnership between neurosurgeons and radiation oncologists has resulted in collaborative studies that have established the clinical benefits of radiosurgery. Today, however, a range of political and financial issues is straining this relationship and thereby undermining the practice of radiosurgery.

Neurosurgeons and radiation oncologists recently restricted the definition of radiosurgery to include only cranial- and spine-focused radiation treatments. Meanwhile, organized radiation oncology decided unilaterally that radiosurgery administered to other parts of the body would be termed stereotactic body radiation therapy. Finally, neurosurgical and radiation oncology coding experts developed new Current Procedural Terminology codes for cranial vault and spine radiosurgery, which were approved for use by the Relative Value Scale Update Committee as of 2009.

The authors suggest that the neurosurgery strategy—which included 1) reasserting that all of the tasks of a radiosurgery procedure remain bundled, and 2) agreeing to limit the definition of radiosurgery to cranial vault and spine—has failed neurosurgeons who perform radiosurgery, and it may jeopardize patient access to this procedure in the future.

The authors propose that all of the involved medical specialties recognize that the application of image-guided, focused radiation therapy throughout the body requires a partnership between radiation and surgical disciplines. They also urge surgeons to reexamine their coding methods, and they maintain that Current Procedural Terminology codes should be consistent across all of the different specialties involved in these procedures. Finally, surgeons should consider appropriate training in medical physics and radiobiology to perform the tasks involved in these specific procedures; ultimately all parties should receive equivalent reimbursement for similar assigned tasks, whether performed individually or jointly.

Restricted access

Response to the editorials

Radiosurgery and radiation oncology

M. Peter Heilbrun and John R. Adler Jr.

Full access

Achal S. Achrol, Raphael Guzman, Monika Varga, John R. Adler, Gary K. Steinberg and Steven D. Chang

Brain arteriovenous malformations (BAVMs) are an important cause of intracerebral hemorrhage (ICH) in young adults. Biological predictors of future ICH risk are lacking, and controversy exists over previous studies of natural history risk among predominantly ruptured BAVM cohorts. Recent studies have suggested that the majority of BAVMs are now diagnosed as unruptured lesions, and that the risk according to natural history among these lesions may be less than previously assumed. In the first part of this review, the authors discuss available data on the natural history of BAVMs and highlight the need for future studies that aim to develop surrogate biomarkers of disease progression that accurately predict future risk of ICH in BAVMs.

The etiology of BAVM remains unknown. Recent studies have suggested a role for genetic factors in the pathogenesis of sporadic BAVM, which is further supported by reports of familial occurrence of BAVM and association with known systemic genetic disorders (such as Osler-Weber-Rendu disease, Sturge-Weber disease, and Wyburn-Mason syndrome). Molecular characterization of BAVM tissue demonstrates a highly angiogenic milieu with evidence of increased endothelial cell turnover. Taken together with a number of reports of de novo BAVM formation, radiographic growth after initial BAVM diagnosis, and regrowth after successful treatment of BAVM, these findings challenge the long-held assumption that BAVMs are static lesions of congenital origin. In the second part of this review, the authors discuss available data on the origins of BAVM and offer insights into future investigations into genetics and endothelial progenitor cell involvement in the pathogenesis of BAVM.

Current treatment options for BAVM focus on removal or obliteration of the lesion in an attempt to protect against future ICH risk, including microsurgical resection, endovascular embolization, and stereotactic radiosurgery (SRS). In the third part of this review, the authors discuss available data on SRS in BAVMs and highlight the need for future studies on the radiobiology of BAVMs, especially in regard to biomarker detection for tracking SRS response during the latency period.

Insights from future investigations in BAVM may not only prove important for the development of novel therapies and relevant biomarkers for BAVM, but could also potentially benefit a variety of other disorders involving new vessel formation in the CNS, including stroke, tumors, moyamoya disease, and other cerebrovascular malformations.

Restricted access

Michael E. Kelly, Raphael Guzman, John Sinclair, Teresa E. Bell-Stephens, Regina Bower, Scott Hamilton, Michael P. Marks, Huy M. Do, Steven D. Chang, John R. Adler, Richard P. Levy and Gary K. Steinberg

Object

Posterior fossa arteriovenous malformations (AVMs) are relatively uncommon and often difficult to treat. The authors present their experience with multimodality treatment of 76 posterior fossa AVMs, with an emphasis on Spetzler–Martin Grades III–V AVMs.

Methods

Seventy-six patients with posterior fossa AVMs treated with radiosurgery, surgery, and endovascular techniques were analyzed.

Results

Between 1982 and 2006, 36 patients with cerebellar AVMs, 33 with brainstem AVMs, and 7 with combined cerebellar–brainstem AVMs were treated. Natural history data were calculated for all 76 patients. The risk of hemorrhage from presentation until initial treatment was 8.4% per year, and it was 9.6% per year after treatment and before obliteration. Forty-eight patients had Grades III–V AVMs with a mean follow-up of 4.8 years (range 0.1–18.4 years, median 3.1 years). Fifty-two percent of patients with Grades III–V AVMs had complete obliteration at the last follow-up visit. Three (21.4%) of 14 patients were cured with a single radiosurgery treatment, and 4 (28.6%) of 14 with 1 or 2 radiosurgery treatments. Twenty-one (61.8%) of 34 patients were cured with multimodality treatment. The mean Glasgow Outcome Scale (GOS) score after treatment was 3.8. Multivariate analysis performed in the 48 patients with Grades III–V AVMs showed radiosurgery alone to be a negative predictor of cure (p = 0.0047). Radiosurgery treatment alone was not a positive predictor of excellent clinical outcome (GOS Score 5; p > 0.05). Nine (18.8%) of 48 patients had major neurological complications related to treatment.

Conclusions

Single-treatment radiosurgery has a low cure rate for posterior fossa Spetzler–Martin Grades III–V AVMs. Multimodality therapy nearly tripled this cure rate, with an acceptable risk of complications and excellent or good clinical outcomes in 81% of patients. Radiosurgery alone should be used for intrinsic brainstem AVMs, and multimodality treatment should be considered for all other posterior fossa AVMs.

Full access

Marco Lee, M. Yashar S. Kalani, Samuel Cheshier, Iris C. Gibbs, John R. Adler Jr. and Steven D. Chang

Object

Many benign intracranial tumors are amenable to radiotherapy treatment including meningiomas, schwannomas, pituitary tumors, and craniopharyngiomas. The authors present their experience in the treatment of craniopharyngiomas in 16 patients using frameless CyberKnife stereotactic radiosurgery (SRS). The authors discuss the role of radiation therapy in the management of these tumors, and more specifically, the role of CyberKnife SRS.

Methods

Sixteen patients were treated for residual or recurrent craniopharyngioma between 2000 and 2007 with CyberKnife SRS at Stanford University Medical Center. All patients underwent magnetic resonance imaging and visual and neuroendocrine evaluations before and at regular intervals after SRS. A multisession treatment regimen and a nonisocentric treatment plan for each patient were used with a mean marginal dose of 21.6 Gy and a mean maximal dose of 29.9 Gy.

Results

There were adequate clinical data to assess outcomes in 11 of 16 patients. Evaluation of patients between 13 and 71 years of age (mean 34.5 years) with a mean follow-up period of 15.4 months revealed no deterioration in visual or neuroendocrine function. Tumor shrinkage was achieved in 7 of these 11 patients, and tumor control in another 3. One patient had cystic enlargement of the residual tumor.

Conclusions

The authors' early experience with the application of CyberKnife SRS to residual or recurrent craniopharyngiomas has been positive; control or shrinkage of the tumor was achieved in 91% of patients, with no visual or neuroendocrine complications. Longer-term follow-up with a larger group of patients is required to fully evaluate the safety and effectiveness of this treatment modality.

Full access

Chirag G. Patil, Anand Veeravagu, Regina S. Bower, Gordon Li, Steven D. Chang, Michael Lim and John R. Adler Jr.

Object

Patients with atypical trigeminal neuralgia (TN) have unilateral pain in the trigeminal distribution that is dull, aching, or burning in nature and is constant or nearly constant. Studies of most radiosurgical and surgical series have shown lower response rates in patients with atypical TN. This study represents the first report of the treatment of atypical TN with frameless CyberKnife stereotactic radiosurgery (SRS).

Methods

Between 2002 and 2007, 7 patients that satisfied the criteria for atypical TN and underwent SRS were included in our study. A 6–8-mm segment of the trigeminal nerve was targeted, excluding the proximal 3 mm at the brainstem. All patients were treated in a single session with a median maximum dose of 78 Gy and a median marginal dose of 64 Gy.

Results

Outcomes in 7 patients with a mean age of 61.6 years and a median follow-up of 20 months are reported. Following SRS, 4 patients had complete pain relief, 2 had minimal pain relief with some decrease in the intensity of their pain, and 1 patient experienced no pain relief. Pain relief was reported within 1 week of SRS in 4 patients and at 4 months in 2 patients. After a median follow-up of 28 months, pain did not recur in any of the 4 patients who had reported complete pain relief. Complications after SRS included bothersome numbness in 3 patients and significant dysesthesias in 1 patient.

Conclusions

The authors have previously reported a 90% rate of excellent pain relief in patients with classic TN treated with CyberKnife SRS. Compared with patients with classic TN, patients with atypical TN have a lower rate of pain relief. Nevertheless, the nearly 60% rate of success after SRS achieved in this study is still comparable to or better than results achieved with any other treatment modality for atypical TN.

Full access

Gordon Li, Chirag Patil, John R. Adler, Shivanand P. Lad, Scott G. Soltys, Iris C. Gibbs, Laurie Tupper and Maxwell Boakye

Object

By targeting the medial branches of the dorsal rami, radiofrequency ablation and facet joint injections can provide temporary amelioration of facet joint–producing (or facetogenic) back pain. The authors used CyberKnife radiosurgery to denervate affected facet joints with the goal of obtaining a less invasive yet more thorough and durable antinociceptive rhizotomy.

Methods

Patients with refractory low-back pain, in whom symptoms are temporarily resolved by facet joint injections, were eligible. The patients were required to exhibit positron emission tomography–positive findings at the affected levels. Radiosurgical rhizotomy, targeting the facet joint, was performed in a single session with a marginal prescription dose of 40 Gy and a maximal dose of 60 Gy.

Results

Seven facet joints in 5 patients with presumptive facetogenic back pain underwent CyberKnife lesioning. The median follow-up was 9.8 months (range 3–16 months). The mean planning target volume was 1.7 cm3 (range 0.9–2.7 cm3). A dose of 40 Gy was prescribed to a mean isodose line of 79% (range 75–80%). Within 1 month of radiosurgery, improvement in pain was observed in 3 of the 5 patients with durable responses at 16, 12, and 6 months, respectively, of follow-up. Two patients, after 12 and 3 months of follow-up, have neither improved nor worsened. No patient has experienced acute or late-onset toxicity.

Conclusions

These preliminary results suggest that CyberKnife radiosurgery could be a safe, effective, and non-invasive alternative to radiofrequency ablation for managing facetogenic back pain. No patient suffered recurrent symptoms after radiosurgery. It is not yet known whether pain relief due to such lesions will be more durable than that produced by alternative procedures. A larger series of patients with long-term follow-up is ongoing.

Full access

Gordon Li, Steven Chang, John R. Adler Jr. and Michael Lim

✓ Glomus jugulare tumors are rare, slow-growing vascular lesions that arise from the chief cells of the paraganglia within the jugular bulb. They can be associated with the tympanic branch of the glossopharyngeal nerve (Jacobsen nerve) or the auricular branch of the vagus nerve (Arnold nerve) and are also referred to as chemodectomas or nonchromaffin paragangliomas. Optimal treatment of these histologically benign tumors remains controversial. Surgery remains the treatment of choice, but can carry high morbidity rates. External-beam radiation was originally used for subtotal resections and in patients who were poor surgical candidates; however, radiosurgery has recently been introduced as an effective and safe treatment option for patients with these tumors. In this article the authors discuss the history of radiation therapy for glomus jugulare tumors, focusing on recent radiosurgical results.