You are looking at 1 - 10 of 10 items for :

  • Journal of Neurosurgery x
  • By Author: Abosch, Aviva x
Clear All
Free access

Aviva Abosch and James T. Rutka

Restricted access

John A. Thompson, Salam Oukal, Hagai Bergman, Steven Ojemann, Adam O. Hebb, Sara Hanrahan, Zvi Israel and Aviva Abosch


Deep brain stimulation (DBS) of the subthalamic nucleus (STN) has become standard care for the surgical treatment of Parkinson’s disease (PD). Reliable interpretation of microelectrode recording (MER) data, used to guide DBS implantation surgery, requires expert electrophysiological evaluation. Recent efforts have endeavored to use electrophysiological signals for automatic detection of relevant brain structures and optimal implant target location.

The authors conducted an observational case-control study to evaluate a software package implemented on an electrophysiological recording system to provide online objective estimates for entry into and exit from the STN. In addition, they evaluated the accuracy of the software in selecting electrode track and depth for DBS implantation into STN, which relied on detecting changes in spectrum activity.


Data were retrospectively collected from 105 MER-guided STN-DBS surgeries (4 experienced neurosurgeons; 3 sites), in which estimates for entry into and exit from the STN, DBS track selection, and implant depth were compared post hoc between those determined by the software and those determined by the implanting neurosurgeon/neurophysiologist during surgery.


This multicenter study revealed submillimetric agreement between surgeon/neurophysiologist and software for entry into and exit out of the STN as well as optimal DBS implant depth.


The results of this study demonstrate that the software can reliably and accurately estimate entry into and exit from the STN and select the track corresponding to ultimate DBS implantation.

Full access

Gabrielle Lynch, Karina Nieto, Saumya Puthenveettil, Marleen Reyes, Michael Jureller, Jason H. Huang, M. Sean Grady, Odette A. Harris, Aruna Ganju, Isabelle M. Germano, Julie G. Pilitsis, Susan C. Pannullo, Deborah L. Benzil, Aviva Abosch, Sarah J. Fouke and Uzma Samadani


The objective of this study is to determine neurosurgery residency attrition rates by sex of matched applicant and by type and rank of medical school attended.


The study follows a cohort of 1361 individuals who matched into a neurosurgery residency program through the SF Match Fellowship and Residency Matching Service from 1990 to 1999. The main outcome measure was achievement of board certification as documented in the American Board of Neurological Surgery Directory of Diplomats. A secondary outcome measure was documentation of practicing medicine as verified by the American Medical Association DoctorFinder and National Provider Identifier websites. Overall, 10.7% (n = 146) of these individuals were women. Twenty percent (n = 266) graduated from a top 10 medical school (24% of women [35/146] and 19% of men [232/1215], p = 0.19). Forty-five percent (n = 618) were graduates of a public medical school, 50% (n = 680) of a private medical school, and 5% (n = 63) of an international medical school. At the end of the study, 0.2% of subjects (n = 3) were deceased and 0.3% (n = 4) were lost to follow-up.


The total residency completion rate was 86.0% (n = 1171) overall, with 76.0% (n = 111/146) of women and 87.2% (n = 1059/1215) of men completing residency. Board certification was obtained by 79.4% (n = 1081) of all individuals matching into residency between 1990 and 1999. Overall, 63.0% (92/146) of women and 81.3% (989/1215) of men were board certified. Women were found to be significantly more at risk (p < 0.005) of not completing residency or becoming board certified than men. Public medical school alumni had significantly higher board certification rates than private and international alumni (82.2% for public [508/618]; 77.1% for private [524/680]; 77.8% for international [49/63]; p < 0.05). There was no significant difference in attrition for graduates of top 10–ranked institutions versus other institutions. There was no difference in number of years to achieve neurosurgical board certification for men versus women.


Overall, neurosurgery training attrition rates are low. Women have had greater attrition than men during and after neurosurgery residency training. International and private medical school alumni had higher attrition than public medical school alumni.

Restricted access

Vaninder Chhabra, Edward Sung, Klaus Mewes, Roy A. E. Bakay, Aviva Abosch and Robert E. Gross


With the expanding indications and increasing number of patients undergoing deep brain stimulation (DBS), postoperative MR imaging is becoming even more important in guiding clinical care and practice-based learning; important safety concerns have recently emerged, however. Although phantom model studies have driven conservative recommendations regarding imaging parameters, highlighted by 2 recent reports describing adverse neurological events associated with MR imaging in patients with implanted DBS systems, the risks of MR imaging in such patients in clinical practice has not been well addressed. In this study, the authors capitalized on their large experience with serial MR imaging (3 times per patient) to use MR imaging itself and clinical outcomes to examine the safety of MR imaging in patients who underwent staged implantation of DBS electrodes for Parkinson disease, tremor, and dystonia.


Sixty-four patients underwent staged bilateral lead implantations between 1997 and 2006, and each patient underwent 3 separate MR imaging sessions subsequent to DBS placement. The first of these was performed after the first DBS placement, the second occurred prior to the second DBS placement, and third was after the second DBS placement. Follow-up was conducted to examine adverse events related either to MR imaging or to DBS-induced injury.


One hundred and ninety-two MR images were obtained, and the mean follow-up time was 3.67 years. The average time between the first and second, and second and third MR imaging sessions was 19.4 months and 14.7 hours, respectively. Twenty-two MR imaging–detected new findings of hemorrhage were documented. However, all new findings were related to acute DBS insertion, whereas there were no new findings after imaging of the chronically implanted electrode.


Although potential risks of MR imaging in patients undergoing DBS may be linked to excessive heating, induced electrical currents, disruption of the normal operation of the device, and/or magnetic field interactions, MR imaging can be performed safely in these patients and provides useful information on DBS lead location to inform patient-specific programming and practice-based learning.

Restricted access

WINS White Paper Committee:, Deborah L. Benzil, Aviva Abosch, Isabelle Germano, Holly Gilmer, J. Nozipo Maraire, Karin Muraszko, Susan Pannullo, Gail Rosseau, Lauren Schwartz, Roxanne Todor, Jamie Ullman and Edie Zusman


The leadership of Women in Neurosurgery (WINS) has been asked by the Board of Directors of the American Association of Neurological Surgeons (AANS) to compose a white paper on the recruitment and retention of female neurosurgical residents and practitioners.


Neurosurgery must attract the best and the brightest. Women now constitute a larger percentage of medical school classes than men, representing approximately 60% of each graduating medical school class. Neurosurgery is facing a potential crisis in the US workforce pipeline, with the number of neurosurgeons in the US (per capita) decreasing.

Women in the Neurosurgery Workforce

The number of women entering neurosurgery training programs and the number of board-certified female neurosurgeons is not increasing. Personal anecdotes demonstrating gender inequity abound among female neurosurgeons at every level of training and career development. Gender inequity exists in neurosurgery training programs, in the neurosurgery workplace, and within organized neurosurgery.


The consistently low numbers of women in neurosurgery training programs and in the workplace results in a dearth of female role models for the mentoring of residents and junior faculty/practitioners. This lack of guidance contributes to perpetuation of barriers to women considering careers in neurosurgery, and to the lack of professional advancement experienced by women already in the field. There is ample evidence that mentors and role models play a critical role in the training and retention of women faculty within academic medicine. The absence of a critical mass of female neurosurgeons in academic medicine may serve as a deterrent to female medical students deciding whether or not to pursue careers in neurosurgery. There is limited exposure to neurosurgery during medical school. Medical students have concerns regarding gender inequities (acceptance into residency, salaries, promotion, and achieving leadership positions). Gender inequity in academic medicine is not unique to neurosurgery; nonetheless, promotion to full professor, to neurosurgery department chair, or to a national leadership position is exceedingly rare within neurosurgery. Bright, competent, committed female neurosurgeons exist in the workforce, yet they are not being promoted in numbers comparable to their male counterparts. No female neurosurgeon has ever been president of the AANS, Congress of Neurological Surgeons, or Society of Neurological Surgeons (SNS), or chair of the American Board of Neurological Surgery (ABNS). No female neurosurgeon has even been on the ABNS or the Neurological Surgery Residency Review Committee and, until this year, no more than 2 women have simultaneously been members of the SNS. Gender inequity serves as a barrier to the advancement of women within both academic and community-based neurosurgery.

Strategic Approach to Address Issues Identified.

To overcome the issues identified above, the authors recommend that the AANS join WINS in implementing a strategic plan, as follows: 1) Characterize the barriers. 2) Identify and eliminate discriminatory practices in the recruitment of medical students, in the training of residents, and in the hiring and advancement of neurosurgeons. 3) Promote women into leadership positions within organized neurosurgery. 4) Foster the development of female neurosurgeon role models by the training and promotion of competent, enthusiastic, female trainees and surgeons.

Restricted access

Aviva Abosch, Neda Bernasconi, Warren Boling, Marilyn Jones-Gotman, Nicole Poulin, François Dubeau, Frederick Andermann and André Olivier

Object. Selective amygdalohippocampectomy (SelAH) is used in the treatment of mesial temporal lobe epilepsy (MTLE). The goal of this study was to determine factors predictive of poor postoperative seizure control (Engel Class III or IV) following SelAH.

Methods. A retrospective study was conducted of 27 patients with poor seizure control postoperatively (Engel III/IV group), in comparison with 27 patients who were free from seizures after surgery (Engel I/II group). The results of electroencephalography, magnetic resonance (MR) imaging, and pathological studies were reviewed, and volumetric MR image analysis was used to compare the extent of the mesial structures that had been resected.

In 56% of patients in the Engel III/IV group, significant bitemporal abnormalities were displayed on preoperative EEG studies, compared with 24% of patients in the Engel I/II group (p < 0.05). An analysis of preoperative MR images disclosed five patients (19%) in the Engel III/IV group and no patient in the Engel I/II group with normal hippocampal volumes bilaterally. Thirteen patients in the Engel III/IV group subsequently underwent either extension of the SelAH (six cases) or a corticoamygdalohippocampectomy (seven patients). Three patients from the former and one patient from the latter subgroup subsequently became seizure free (four patients total [34%]). The remaining nine patients did not improve, despite the fact that they had undergone near-total resection of mesial structures.

Conclusions. The majority of patients receiving suboptimal seizure control following SelAH did not meet the criteria for unilateral MTLE, based on EEG, MR imaging, and/or histopathological studies. These patients were therefore unlikely to benefit from additional resection of mesial structures. With the benefits of modern imaging, and by strict adherence to selection criteria, SelAH can be predicted to yield excellent postoperative seizure control for nearly all patients with unilateral MTLE. There remains a subpopulation, however, that meets the criteria for MTLE, but does not become free from seizure following SelAH.

Restricted access

Jean A. Saint-Cyr, Tasnuva Hoque, Luiz C. M. Pereira, Jonathan O. Dostrovsky, William D. Hutchison, David J. Mikulis, Aviva Abosch, Elspeth Sime, Anthony E. Lang and Andres M. Lozano

Object. The authors sought to determine the location of deep brain stimulation (DBS) electrodes that were most effective in treating Parkinson disease (PD).

Methods. Fifty-four DBS electrodes were localized in and adjacent to the subthalamic nucleus (STN) postoperatively by using magnetic resonance (MR) imaging in a series of 29 patients in whom electrodes were implanted for the treatment of medically refractory PD, and for whom quantitative clinical assessments were available both pre- and postoperatively. A novel MR imaging sequence was developed that optimized visualization of the STN. The coordinates of the tips of these electrodes were calculated three dimensionally and the results were normalized and corrected for individual differences by using intraoperative neurophysiological data (mean 5.13 mm caudal to the midcommissural point [MCP], 8.46 mm inferior to the anterior commissure—posterior commissure [AC—PC], and 10.2 mm lateral to the midline).

Despite reported concerns about distortion on the MR image, reconstructions provided consistent data for the localization of electrodes. The neurosurgical procedures used, which were guided by combined neuroimaging and neurophysiological methods, resulted in the consistent placement of DBS electrodes in the subthalamus and mesencephalon such that the electrode contacts passed through the STN and dorsally adjacent fields of Forel (FF) and zona incerta (ZI). The mean location of the clinically effective contacts was in the anterodorsal STN (mean 1.62 mm posterior to the MCP, 2.47 mm inferior to the AC—PC, and 11.72 mm lateral to the midline). Clinically effective stimulation was most commonly directed at the anterodorsal STN, with the current spreading into the dorsally adjacent FF and ZI.

Conclusions. The anatomical localization of clinically effective electrode contacts provided in this study yields useful information for the postoperative programming of DBS electrodes.

Restricted access

Aviva Abosch, William D. Hutchison, Jean A. Saint-Cyr, Jonathan O. Dostrovsky and Andres M. Lozano

Object. The subthalamic nucleus (STN) is a target in the surgical treatment of Parkinson disease (PD). Little is known about the neurons within the human STN that modulate movement. The authors' goal was to examine the distribution of movement-related neurons within the STN of humans by using microelectrode recording to identify neuronal receptive fields.

Methods. Data were retrospectively collected from microelectrode recordings that had been obtained in 38 patients with PD during surgery for placement of STN deep brain stimulation electrodes. The recordings had been obtained in awake, nonsedated patients. Antiparkinsonian medications were withheld the night before surgery. Neuronal discharges were amplified, filtered, and displayed on an oscilloscope and fed to an audio monitor. The receptive fields were identified by the presence of reproducible, audible changes in the firing rate that were time-locked to the movement of specific joint(s).

The median number of electrode tracks per patient was six (range two–nine). The receptive fields were identified in 278 (55%) of 510 STN neurons studied. One hundred one tracks yielded receptive field data. Fourteen percent of 64 cells tested positive for face receptive fields, 32% of 687 cells tested positive for upper-extremity receptive fields, and 21% of 242 cells tested positive for lower-extremity receptive fields. Sixty-eight cells (24%) demonstrated multiple-joint receptive fields. Ninety-three cells (65%) with movement-related receptive fields were located in the dorsal half of the STN, and 96.8% of these were located in the rostral two thirds of the STN. Analysis of receptive field locations from pooled data and along individual electrode tracks failed to reveal a consistent somatotopic organization.

Conclusions. Data from this study demonstrate a regional compartmentalization of neurons with movement-related receptive fields within the STN, supporting the existence of specific motor territories within the STN in patients suffering from PD.