Browse

You are looking at 1 - 3 of 3 items for

  • All content x
  • By Author: Poliakov, Andrew V. x
Clear All
Free access

Sandra L. Poliachik, Andrew V. Poliakov, Laura A. Jansen, Sharon S. McDaniel, Carter D. Wray, John Kuratani, Russell P. Saneto, Jeffrey G. Ojemann, and Edward J. Novotny Jr

Object

Imaging-guided surgery (IGS) systems are widely used in neurosurgical practice. During epilepsy surgery, the authors routinely use IGS landmarks to localize intracranial electrodes and/or specific brain regions. The authors have developed a technique to coregister these landmarks with pre- and postoperative scans and the Montreal Neurological Institute (MNI) standard space brain MRI to allow 1) localization and identification of tissue anatomy; and 2) identification of Brodmann areas (BAs) of the tissue resected during epilepsy surgery. Tracking tissue in this fashion allows for better correlation of patient outcome to clinical factors, functional neuroimaging findings, and pathological characteristics and molecular studies of resected tissue.

Methods

Tissue samples were collected in 21 patients. Coordinates from intraoperative tissue localization were downloaded from the IGS system and transformed into patient space, as defined by preoperative high-resolution T1-weighted MRI volume. Tissue landmarks in patient space were then transformed into MNI standard space for identification of the BAs of the tissue samples.

Results

Anatomical locations of resected tissue were identified from the intraoperative resection landmarks. The BAs were identified for 17 of the 21 patients. The remaining patients had abnormal brain anatomy that could not be meaningfully coregistered with the MNI standard brain without causing extensive distortion.

Conclusions

This coregistration and landmark tracking technique allows localization of tissue that is resected from patients with epilepsy and identification of the BAs for each resected region. The ability to perform tissue localization allows investigators to relate preoperative, intraoperative, and postoperative functional and anatomical brain imaging to better understand patient outcomes, improve patient safety, and aid in research.

Free access

Anthony C. Wang, George M. Ibrahim, Andrew V. Poliakov, Page I. Wang, Aria Fallah, Gary W. Mathern, Robert T. Buckley, Kelly Collins, Alexander G. Weil, Hillary A. Shurtleff, Molly H. Warner, Francisco A. Perez, Dennis W. Shaw, Jason N. Wright, Russell P. Saneto, Edward J. Novotny, Amy Lee, Samuel R. Browd, and Jeffrey G. Ojemann

OBJECTIVE

The potential loss of motor function after cerebral hemispherectomy is a common cause of anguish for patients, their families, and their physicians. The deficits these patients face are individually unique, but as a whole they provide a framework to understand the mechanisms underlying cortical reorganization of motor function. This study investigated whether preoperative functional MRI (fMRI) and diffusion tensor imaging (DTI) could predict the postoperative preservation of hand motor function.

METHODS

Thirteen independent reviewers analyzed sensorimotor fMRI and colored fractional anisotropy (CoFA)–DTI maps in 25 patients undergoing functional hemispherectomy for treatment of intractable seizures. Pre- and postoperative gross hand motor function were categorized and correlated with fMRI and DTI findings, specifically, abnormally located motor activation on fMRI and corticospinal tract atrophy on DTI.

RESULTS

Normal sensorimotor cortical activation on preoperative fMRI was significantly associated with severe decline in postoperative motor function, demonstrating 92.9% sensitivity (95% CI 0.661–0.998) and 100% specificity (95% CI 0.715–1.00). Bilaterally robust, symmetric corticospinal tracts on CoFA-DTI maps were significantly associated with severe postoperative motor decline, demonstrating 85.7% sensitivity (95% CI 0.572–0.982) and 100% specificity (95% CI 0.715–1.00). Interpreting the fMR images, the reviewers achieved a Fleiss’ kappa coefficient (κ) for interrater agreement of κ = 0.69, indicating good agreement (p < 0.01). When interpreting the CoFA-DTI maps, the reviewers achieved κ = 0.64, again indicating good agreement (p < 0.01).

CONCLUSIONS

Functional hemispherectomy offers a high potential for seizure freedom without debilitating functional deficits in certain instances. Patients likely to retain preoperative motor function can be identified prior to hemispherectomy, where fMRI or DTI suggests that cortical reorganization of motor function has occurred prior to the operation.

Full access

Fabio Grassia, Andrew V. Poliakov, Sandra L. Poliachik, Kaitlyn Casimo, Seth D. Friedman, Hillary Shurtleff, Carlo Giussani, Edward J. Novotny Jr., Jeffrey G. Ojemann, and Jason S. Hauptman

OBJECTIVE

Functional connectivity magnetic resonance imaging (fcMRI) is a form of fMRI that allows for analysis of blood oxygen level–dependent signal changes within a task-free, resting paradigm. This technique has been shown to have efficacy in evaluating network connectivity changes with epilepsy. Presurgical data from patients with unilateral temporal lobe epilepsy were evaluated using the fcMRI technique to define connectivity changes within and between the diseased and healthy temporal lobes using a within-subjects design.

METHODS

Using presurgical fcMRI data from pediatric patients with unilateral temporal lobe epilepsy, the authors performed seed-based analyses within the diseased and healthy temporal lobes. Connectivity within and between temporal lobe seeds was measured and compared.

RESULTS

In the cohort studied, local ipsilateral temporal lobe connectivity was significantly increased on the diseased side compared to the healthy temporal lobe. Connectivity of the diseased side to the healthy side, on the other hand, was significantly reduced when compared to connectivity of the healthy side to the diseased temporal lobe. A statistically significant regression was observed when comparing the changes in local ipsilateral temporal lobe connectivity to the changes in inter–temporal lobe connectivity. A statistically significant difference was also noted in ipsilateral connectivity changes between patients with and those without mesial temporal sclerosis.

CONCLUSIONS

Using fcMRI, significant changes in ipsilateral temporal lobe and inter–temporal lobe connectivity can be appreciated in unilateral temporal lobe epilepsy. Furthermore, fcMRI may have a role in the presurgical evaluation of patients with intractable temporal lobe epilepsy.