Browse

You are looking at 1 - 10 of 67 items for

  • Refine by Access: all x
  • By Author: Sciubba, Daniel M. x
  • By Author: Gokaslan, Ziya L. x
Clear All
Restricted access

Wuyang Yang, Jordina Rincon-Torroella, James Feghali, Adham M. Khalafallah, Wataru Ishida, Alexander Perdomo-Pantoja, Alfredo Quiñones-Hinojosa, Michael Lim, Gary L. Gallia, Gregory J. Riggins, William S. Anderson, Sheng-Fu Larry Lo, Daniele Rigamonti, Rafael J. Tamargo, Timothy F. Witham, Ali Bydon, Alan R. Cohen, George I. Jallo, Alban Latremoliere, Mark G. Luciano, Debraj Mukherjee, Alessandro Olivi, Lintao Qu, Ziya L. Gokaslan, Daniel M. Sciubba, Betty Tyler, Henry Brem, and Judy Huang

OBJECTIVE

International research fellows have been historically involved in academic neurosurgery in the United States (US). To date, the contribution of international research fellows has been underreported. Herein, the authors aimed to quantify the academic output of international research fellows in the Department of Neurosurgery at The Johns Hopkins University School of Medicine.

METHODS

Research fellows with Doctor of Medicine (MD), Doctor of Philosophy (PhD), or MD/PhD degrees from a non-US institution who worked in the Hopkins Department of Neurosurgery for at least 6 months over the past decade (2010–2020) were included in this study. Publications produced during fellowship, number of citations, and journal impact factors (IFs) were analyzed using ANOVA. A survey was sent to collect information on personal background, demographics, and academic activities.

RESULTS

Sixty-four international research fellows were included, with 42 (65.6%) having MD degrees, 17 (26.6%) having PhD degrees, and 5 (7.8%) having MD/PhD degrees. During an average 27.9 months of fellowship, 460 publications were produced in 136 unique journals, with 8628 citations and a cumulative journal IF of 1665.73. There was no significant difference in total number of publications, first-author publications, and total citations per person among the different degree holders. Persons holding MD/PhDs had a higher number of citations per publication per person (p = 0.027), whereas those with MDs had higher total IFs per person (p = 0.048). Among the 43 (67.2%) survey responders, 34 (79.1%) had nonimmigrant visas at the start of the fellowship, 16 (37.2%) were self-paid or funded by their country of origin, and 35 (81.4%) had mentored at least one US medical student, nonmedical graduate student, or undergraduate student.

CONCLUSIONS

International research fellows at the authors’ institution have contributed significantly to academic neurosurgery. Although they have faced major challenges like maintaining nonimmigrant visas, negotiating cultural/language differences, and managing self-sustainability, their scientific productivity has been substantial. Additionally, the majority of fellows have provided reciprocal mentorship to US students.

Free access

Charlotte Dandurand, Charles G. Fisher, Laurence D. Rhines, Stefano Boriani, Raphaële Charest-Morin, Alessandro Gasbarrini, Alessandro Luzzati, Jeremy J. Reynolds, Feng Wei, Ziya L. Gokaslan, Chetan Bettegowda, Daniel M. Sciubba, Aron Lazary, Norio Kawahara, Michelle J. Clarke, Y. Raja Rampersaud, Alexander C. Disch, Dean Chou, John H. Shin, Francis J. Hornicek, IIya Laufer, Arjun Sahgal, and Nicolas Dea

OBJECTIVE

Oncological resection of primary spine tumors is associated with lower recurrence rates. However, even in the most experienced hands, the execution of a meticulously drafted plan sometimes fails. The objectives of this study were to determine how successful surgical teams are at achieving planned surgical margins and how successful surgeons are in intraoperatively assessing tumor margins. The secondary objective was to identify factors associated with successful execution of planned resection.

METHODS

The Primary Tumor Research and Outcomes Network (PTRON) is a multicenter international prospective registry for the management of primary tumors of the spine. Using this registry, the authors compared 1) the planned surgical margin and 2) the intraoperative assessment of the margin by the surgeon with the postoperative assessment of the margin by the pathologist. Univariate analysis was used to assess whether factors such as histology, size, location, previous radiotherapy, and revision surgery were associated with successful execution of the planned margins.

RESULTS

Three hundred patients were included. The surgical plan was successfully achieved in 224 (74.7%) patients. The surgeon correctly assessed the intraoperative margins, as reported in the final assessment by the pathologist, in 239 (79.7%) patients. On univariate analysis, no factor had a statistically significant influence on successful achievement of planned margins.

CONCLUSIONS

In high-volume cancer centers around the world, planned surgical margins can be achieved in approximately 75% of cases. The morbidity of the proposed intervention must be balanced with the expected success rate in order to optimize patient management and surgical decision-making.

Restricted access

Wataru Ishida, Joshua Casaos, Arun Chandra, Adam D’Sa, Seba Ramhmdani, Alexander Perdomo-Pantoja, Nicholas Theodore, George Jallo, Ziya L. Gokaslan, Jean-Paul Wolinsky, Daniel M. Sciubba, Ali Bydon, Timothy F. Witham, and Sheng-Fu L. Lo

OBJECTIVE

With the advent of intraoperative electrophysiological neuromonitoring (IONM), surgical outcomes of various neurosurgical pathologies, such as brain tumors and spinal deformities, have improved. However, its diagnostic and therapeutic value in resecting intradural extramedullary (ID-EM) spinal tumors has not been well documented in the literature. The objective of this study was to summarize the clinical results of IONM in patients with ID-EM spinal tumors.

METHODS

A retrospective patient database review identified 103 patients with ID-EM spinal tumors who underwent tumor resection with IONM (motor evoked potentials, somatosensory evoked potentials, and free-running electromyography) from January 2010 to December 2015. Patients were classified as those without any new neurological deficits at the 6-month follow-up (group A; n = 86) and those with new deficits (group B; n = 17). Baseline characteristics, clinical outcomes, and IONM findings were collected and statistically analyzed. In addition, a meta-analysis in compliance with the PRISMA guidelines was performed to estimate the overall pooled diagnostic accuracy of IONM in ID-EM spinal tumor resection.

RESULTS

No intergroup differences were discovered between the groups regarding baseline characteristics and operative data. In multivariate analysis, significant IONM changes (p < 0.001) and tumor location (thoracic vs others, p = 0.018) were associated with new neurological deficits at the 6-month follow-up. In predicting these changes, IONM yielded a sensitivity of 82.4% (14/17), specificity of 90.7% (78/86), positive predictive value (PPV) of 63.6% (14/22), negative predictive value (NPV) of 96.3% (78/81), and area under the curve (AUC) of 0.893. The diagnostic value slightly decreased in patients with schwannomas (AUC = 0.875) and thoracic tumors (AUC = 0.842). Among 81 patients who did not demonstrate significant IONM changes at the end of surgery, 19 patients (23.5%) exhibited temporary intraoperative exacerbation of IONM signals, which were recovered by interruption of surgical maneuvers; none of these patients developed new neurological deficits postoperatively. Including the present study, 5 articles encompassing 323 patients were eligible for this meta-analysis, and the overall pooled diagnostic value of IONM was a sensitivity of 77.9%, a specificity of 91.1%, PPV of 56.7%, and NPV of 95.7%.

CONCLUSIONS

IONM for the resection of ID-EM spinal tumors is a reasonable modality to predict new postoperative neurological deficits at the 6-month follow-up. Future prospective studies are warranted to further elucidate its diagnostic and therapeutic utility.

Full access

Hannah M. Carl, A. Karim Ahmed, Nancy Abu-Bonsrah, Rafael De la Garza Ramos, Eric W. Sankey, Zachary Pennington, Ali Bydon, Timothy F. Witham, Jean-Paul Wolinsky, Ziya L. Gokaslan, Justin M. Sacks, C. Rory Goodwin, and Daniel M. Sciubba

OBJECTIVE

Resection of metastatic spine tumors can improve patients’ quality of life by addressing pain or neurological compromise. However, resections are often complicated by wound dehiscence, infection, instrumentation failures, and the need for reoperation. Moreover, when reoperations are needed, the most common indication is surgical site infection and wound breakdown. In turn, wound reoperations increase morbidity as well as the length and cost of hospitalization. The aim of this study was to examine perioperative risk factors associated with increased rate of wound reoperations after metastatic spine tumor resection.

METHODS

A retrospective study of patients at a single institution who underwent metastatic spine tumor resection between 2003 and 2013 was conducted. Factors with a p value < 0.200 in a univariate analysis were included in the multivariate model.

RESULTS

A total of 159 patients were included in this study. Karnofsky Performance Scale score > 70, smoking status, hypertension, thromboembolic events, hyperlipidemia, increasing number of vertebral levels, and posterior approach were included in the multivariate analysis. Thromboembolic events (95% CI 1.19–48.5, p = 0.032) and number of levels involved were independently associated with increased wound reoperation rates in the multivariate model. For each additional spinal level involved, the risk for wound reoperations increased by 21% (95% CI 1.03–1.43, p = 0.018).

CONCLUSIONS

Although wound complications and subsequent reoperations are potential risks for all patients with metastatic spine tumor, due to adjuvant radiotherapy and other medical comorbidities, this study identified patients with thromboembolic events or those requiring a larger incision as being at the highest risk. Measures intended to decrease the occurrence of perioperative venous thromboembolism and to improve wound care, especially for long incisions, may decrease wound-related revision surgeries in this vulnerable group of patients.

Full access

Rachel Sarabia-Estrada, Alejandro Ruiz-Valls, Sagar R. Shah, A. Karim Ahmed, Alvaro A. Ordonez, Fausto J. Rodriguez, Hugo Guerrero-Cazares, Ismael Jimenez-Estrada, Esteban Velarde, Betty Tyler, Yuxin Li, Neil A. Phillips, C. Rory Goodwin, Rory J. Petteys, Sanjay K. Jain, Gary L. Gallia, Ziya L. Gokaslan, Alfredo Quinones-Hinojosa, and Daniel M. Sciubba

OBJECTIVE

Chordoma is a slow-growing, locally aggressive cancer that is minimally responsive to conventional chemotherapy and radiotherapy and has high local recurrence rates after resection. Currently, there are no rodent models of spinal chordoma. In the present study, the authors sought to develop and characterize an orthotopic model of human chordoma in an immunocompromised rat.

METHODS

Thirty-four immunocompromised rats were randomly allocated to 4 study groups; 22 of the 34 rats were engrafted in the lumbar spine with human chordoma. The groups were as follows: UCH1 tumor–engrafted (n = 11), JHC7 tumor–engrafted (n = 11), sham surgery (n = 6), and intact control (n = 6) rats. Neurological impairment of rats due to tumor growth was evaluated using open field and locomotion gait analysis; pain response was evaluated using mechanical or thermal paw stimulation. Cone beam CT (CBCT), MRI, and nanoScan PET/CT were performed to evaluate bony changes due to tumor growth. On Day 550, rats were killed and spines were processed for H & E–based histological examination and immunohistochemistry for brachyury, S100β, and cytokeratin.

RESULTS

The spine tumors displayed typical chordoma morphology, that is, physaliferous cells filled with vacuolated cytoplasm of mucoid matrix. Brachyury immunoreactivity was confirmed by immunostaining, in which samples from tumor-engrafted rats showed a strong nuclear signal. Sclerotic lesions in the vertebral body of rats in the UCH1 and JHC7 groups were observed on CBCT. Tumor growth was confirmed using contrast-enhanced MRI. In UCH1 rats, large tumors were observed growing from the vertebral body. JHC7 chordoma–engrafted rats showed smaller tumors confined to the bone periphery compared with UCH1 chordoma–engrafted rats. Locomotion analysis showed a disruption in the normal gait pattern, with an increase in the step length and duration of the gait in tumor-engrafted rats. The distance traveled and the speed of rats in the open field test was significantly reduced in the UCH1 and JHC7 tumor–engrafted rats compared with controls. Nociceptive response to a mechanical stimulus showed a significant (p < 0.001) increase in the paw withdrawal threshold (mechanical hypalgesia). In contrast, the paw withdrawal response to a thermal stimulus decreased significantly (p < 0.05) in tumor-engrafted rats.

CONCLUSIONS

The authors developed an orthotopic human chordoma model in rats. Rats were followed for 550 days using imaging techniques, including MRI, CBCT, and nanoScan PET/CT, to evaluate lesion progression and bony integrity. Nociceptive evaluations and locomotion analysis were performed during follow-up. This model reproduces cardinal signs, such as locomotor and sensory deficits, similar to those observed clinically in human patients. To the authors’ knowledge, this is the first spine rodent model of human chordoma. Its use and further study will be essential for pathophysiology research and the development of new therapeutic strategies.

Full access

Ganesh M. Shankar, Michelle J. Clarke, Tamir Ailon, Laurence D. Rhines, Shreyaskumar R. Patel, Arjun Sahgal, Ilya Laufer, Dean Chou, Mark H. Bilsky, Daniel M. Sciubba, Michael G. Fehlings, Charles G. Fisher, Ziya L. Gokaslan, and John H. Shin

OBJECTIVE

Primary osteosarcoma of the spine is a rare osseous neoplasm. While previously reported retrospective studies have demonstrated that overall patient survival is impacted mostly by en bloc resection and chemotherapy, the continued management of residual disease remains to be elucidated. This systematic review was designed to address the role of revision surgery and multimodal adjuvant therapy in cases in which en bloc excision is not initially achieved.

METHODS

A systematic literature search spanning the years 1966 to 2015 was performed on PubMed, Medline, EMBASE, and Web of Science to identify reports describing outcomes of patients who underwent biopsy alone, neurological decompression, or intralesional resection for osteosarcoma of the spine. Studies were reviewed qualitatively, and the clinical course of individual patients was aggregated for quantitative meta-analysis.

RESULTS

A total of 16 studies were identified for inclusion in the systematic review, of which 8 case reports were summarized qualitatively. These studies strongly support the role of chemotherapy for overall survival and moderately support adjuvant radiation therapy for local control. The meta-analysis revealed a statistically significant benefit in overall survival for performing revision tumor debulking (p = 0.01) and also for chemotherapy at relapse (p < 0.01). Adjuvant radiation therapy was associated with longer survival, although this did not reach statistical significance (p = 0.06).

CONCLUSIONS

While the initial therapeutic goal in the management of osteosarcoma of the spine is neoadjuvant chemotherapy followed by en bloc marginal resection, this objective is not always achievable given anatomical constraints and other limitations at the time of initial clinical presentation. This systematic review supports the continued aggressive use of revision surgery and multimodal adjuvant therapy when possible to improve outcomes in patients who initially undergo subtotal debulking of osteosarcoma. A limitation of this systematic review is that lesions amenable to subsequent resection or tumors inherently more sensitive to adjuvants would exaggerate a therapeutic effect of these interventions when studied in a retrospective fashion.

Free access

Benjamin D. Elder, Wataru Ishida, C. Rory Goodwin, Ali Bydon, Ziya L. Gokaslan, Daniel M. Sciubba, Jean-Paul Wolinsky, and Timothy F. Witham

OBJECTIVE

With the advent of new adjunctive therapy, the overall survival of patients harboring spinal column tumors has improved. However, there is limited knowledge regarding the optimal bone graft options following resection of spinal column tumors, due to their relative rarity and because fusion outcomes in this cohort are affected by various factors, such as radiation therapy (RT) and chemotherapy. Furthermore, bone graft options are often limited following tumor resection because the use of local bone grafts and bone morphogenetic proteins (BMPs) are usually avoided in light of microscopic infiltration of tumors into local bone and potential carcinogenicity of BMP. The objective of this study was to review and meta-analyze the relevant clinical literature to provide further clinical insight regarding bone graft options.

METHODS

A web-based MEDLINE search was conducted in accordance with preferred reporting items for systematic review and meta-analysis (PRISMA) guidelines, which yielded 27 articles with 383 patients. Information on baseline characteristics, tumor histology, adjunctive treatments, reconstruction methods, bone graft options, fusion rates, and time to fusion were collected. Pooled fusion rates (PFRs) and I2 values were calculated in meta-analysis. Meta-regression analyses were also performed if each variable appeared to affect fusion outcomes. Furthermore, data on 272 individual patients were available, which were additionally reviewed and statistically analyzed.

RESULTS

Overall, fusion rates varied widely from 36.0% to 100.0% due to both inter- and intrastudy heterogeneity, with a PFR of 85.7% (I2 = 36.4). The studies in which cages were filled with morselized iliac crest autogenic bone graft (ICABG) and/or other bone graft options were used for anterior fusion showed a significantly higher PFR of 92.8, compared with the other studies (83.3%, p = 0.04). In per-patient analysis, anterior plus posterior fusion resulted in a higher fusion rate than anterior fusion only (98.8% vs 86.4%, p < 0.001). Although unmodifiable, RT (90.3% vs 98.6%, p = 0.03) and lumbosacral tumors (74.6% vs 97.9%, p < 0.001) were associated with lower fusion rates in univariate analysis. The mean time to fusion was 5.4 ± 1.4 months (range 3–9 months), whereas 16 of 272 patients died before the confirmation of solid fusion with a mean survival of 3.1 ± 2.1 months (range 0.5–6 months). The average time to fusion of patients who received RT and chemotherapy were significantly longer than those who did not receive these adjunctive treatments (RT: 6.1 months vs 4.3 months, p < 0.001; chemotherapy: 6.0 months vs 4.3 months, p = 0.02).

CONCLUSIONS

Due to inter- and intrastudy heterogeneity in patient, disease, fusion criteria, and treatment characteristics, the optimal surgical techniques and factors predictive of fusion remain unclear. Clearly, future prospective, randomized studies will be necessary to better understand the issues surrounding bone graft selection following resection of spinal column tumors.

Free access

Daniel M. Sciubba, Rafael De la Garza Ramos, C. Rory Goodwin, Nancy Abu-Bonsrah, Ali Bydon, Timothy F. Witham, Chetan Bettegowda, Ziya L. Gokaslan, and Jean-Paul Wolinsky

OBJECTIVE

The goal of this study was to investigate the local recurrence rate and long-term survival after resection of spinal sarcomas.

METHODS

A retrospective review of patients who underwent resection of primary or metastatic spinal sarcomas between 1997 and 2015 was performed. Tumors were classified according to the Enneking classification, and resection was categorized as Enneking appropriate (EA) if the specimen margins matched the Enneking recommendation, and as Enneking inappropriate (EI) if they did not match the recommendation. The primary outcome measure for all tumors was overall survival; local recurrence was also an outcome measure for primary sarcomas. The association between clinical, surgical, and molecular (tumor biomarker) factors and outcomes was also investigated.

RESULTS

A total of 60 patients with spinal sarcoma were included in this study (28 men and 32 women; median age 38 years). There were 52 primary (86.7%) and 8 metastatic sarcomas (13.3%). Thirty-nine tumors (65.0%) were classified as high-grade, and resection was considered EA in 61.7% of all cases (n = 37). The local recurrence rate was 10 of 52 (19.2%) for primary sarcomas; 36.8% for EI resection and 9.1% for EA resection (p = 0.010). Twenty-eight patients (46.7%) died during the follow-up period, and median survival was 26 months. Overall median survival was longer for patients with EA resection (undefined) compared with EI resection (13 months, p < 0.001). After multivariate analysis, EA resection significantly decreased the hazard of local recurrence (HR 0.24, 95% CI 0.06–0.93; p = 0.039). Age 40 years or older (HR 4.23, 95% CI 1.73–10.31; p = 0.002), previous radiation (HR 3.44, 95% CI 1.37–8.63; p = 0.008), and high-grade sarcomas (HR 3.17, 95% CI 1.09–9.23; p = 0.034) were associated with a significantly increased hazard of death, whereas EA resection was associated with a significantly decreased hazard of death (HR 0.22, 95% CI 0.09–0.52; p = 0.001).

CONCLUSIONS

The findings in the present study suggest that EA resection may be the strongest independent prognostic factor for improved survival in patients with spinal sarcoma. Additionally, patients who underwent EA resection had lower local recurrence rates. Patients 40 years or older, those with a history of previous radiation, and those with high-grade tumors had an increased hazard of mortality in this study.

Free access

Rory J. Petteys, Steven M. Spitz, C. Rory Goodwin, Nancy Abu-Bonsrah, Ali Bydon, Timothy F. Witham, Jean-Paul Wolinsky, Ziya L. Gokaslan, and Daniel M. Sciubba

OBJECTIVE

Renal cell carcinoma (RCC) frequently metastasizes to the spine, causing pain or neurological dysfunction, and is often resistant to standard therapies. Spinal surgery is frequently required, but may result in high morbidity rates. The authors sought to identify prognostic factors and determine clinical outcomes in patients undergoing surgery for RCC spinal metastases.

METHODS

The authors searched the records of patients who had undergone spinal surgery for metastatic disease at a single institution during a 12-year period and retrieved data for 30 patients with metastatic RCC. The records were retrospectively reviewed for data on preoperative conditions, treatment, and survival. Statistical analyses (i.e., Kaplan-Meier survival analysis and log-rank test in univariate analysis) were performed with R version 2.15.2.

RESULTS

The 30 patients (23 men and 7 women with a mean age of 57.6 years [range 29–79 years]) had in total 40 spinal surgeries for metastatic RCC. The indications for surgery included pain (70%) and weakness (30%). Fourteen patients (47%) had a Spinal Instability Neoplastic Score (SINS) indicating indeterminate or impending instability, and 6 patients (20%) had a SINS denoting instability. The median length of postoperative survival estimated with Kaplan-Meier analysis was 11.4 months. Younger age (p = 0.001) and disease control at the primary site (p = 0.005), were both significantly associated with improved survival. In contrast, visceral (p = 0.002) and osseous (p = 0.009) metastases, nonambulatory status (p = 0.001), and major comorbidities (p = 0.015) were all significantly associated with decreased survival. Postoperative Frankel grades were the same or had improved in 78% of patients. Major complications occurred in 9 patients, and there were 3 deaths (10%) during the 30-day in-hospital period. Three en bloc resections were performed.

CONCLUSIONS

Resection and fixation may provide pain relief and neurological stabilization in patients with spinal metastases arising from RCC, but surgical morbidity rates remain high. Younger patients with solitary spinal metastases, good neurological function, and limited major comorbidities may have longer survival and may benefit from aggressive intervention.