Browse

You are looking at 1 - 10 of 13 items for

  • Refine by Access: all x
  • By Author: Sciubba, Daniel M. x
  • By Author: Cottrill, Ethan x
Clear All
Restricted access

Ann Liu, Yike Jin, Ethan Cottrill, Majid Khan, Erick Westbroek, Jeff Ehresman, Zach Pennington, Sheng-fu L. Lo, Daniel M. Sciubba, Camilo A. Molina, and Timothy F. Witham

OBJECTIVE

Augmented reality (AR) is a novel technology which, when applied to spine surgery, offers the potential for efficient, safe, and accurate placement of spinal instrumentation. The authors report the accuracy of the first 205 pedicle screws consecutively placed at their institution by using AR assistance with a unique head-mounted display (HMD) navigation system.

METHODS

A retrospective review was performed of the first 28 consecutive patients who underwent AR-assisted pedicle screw placement in the thoracic, lumbar, and/or sacral spine at the authors’ institution. Clinical accuracy for each pedicle screw was graded using the Gertzbein-Robbins scale by an independent neuroradiologist working in a blinded fashion.

RESULTS

Twenty-eight consecutive patients underwent thoracic, lumbar, or sacral pedicle screw placement with AR assistance. The median age at the time of surgery was 62.5 (IQR 13.8) years and the median body mass index was 31 (IQR 8.6) kg/m2. Indications for surgery included degenerative disease (n = 12, 43%); deformity correction (n = 12, 43%); tumor (n = 3, 11%); and trauma (n = 1, 4%). The majority of patients (n = 26, 93%) presented with low-back pain, 19 (68%) patients presented with radicular leg pain, and 10 (36%) patients had documented lower extremity weakness. A total of 205 screws were consecutively placed, with 112 (55%) placed in the lumbar spine, 67 (33%) in the thoracic spine, and 26 (13%) at S1. Screw placement accuracy was 98.5% for thoracic screws, 97.8% for lumbar/S1 screws, and 98.0% overall.

CONCLUSIONS

AR depicted through a unique HMD is a novel and clinically accurate technology for the navigated insertion of pedicle screws. The authors describe the first 205 AR-assisted thoracic, lumbar, and sacral pedicle screws consecutively placed at their institution with an accuracy of 98.0% as determined by a Gertzbein-Robbins grade of A or B.

Restricted access

Andrew Hersh, Robert Young, Zach Pennington, Jeff Ehresman, Andy Ding, Srujan Kopparapu, Ethan Cottrill, Daniel M. Sciubba, and Nicholas Theodore

OBJECTIVE

Currently, no consensus exists as to whether patients who develop infection of the surgical site after undergoing instrumented fusion should have their implants removed at the time of wound debridement. Instrumentation removal may eliminate a potential infection nidus, but removal may also destabilize the patient’s spine. The authors sought to summarize the existing evidence by systematically reviewing published studies that compare outcomes between patients undergoing wound washout and instrumentation removal with outcomes of patients undergoing wound washout alone. The primary objectives were to determine 1) whether instrumentation removal from an infected wound facilitates infection clearance and lowers morbidity, and 2) whether the chronicity of the underlying infection affects the decision to remove instrumentation.

METHODS

PRISMA guidelines were used to review the PubMed/MEDLINE, Embase, Cochrane Library, Scopus, Web of Science, and ClinicalTrials.gov databases to identify studies that compared patients with implants removed and patients with implants retained. Outcomes of interest included mortality, rate of repeat wound washout, and loss of correction.

RESULTS

Fifteen articles were included. Of 878 patients examined in these studies, 292 (33%) had instrumentation removed. Patient populations were highly heterogeneous, and outcome data were limited. Available data suggested that rates of reoperation, pseudarthrosis, and death were higher in patients who underwent instrumentation removal at the time of initial washout. Three studies recommended that instrumentation be uniformly removed at the time of wound washout. Five studies favored retaining the original instrumentation. Six studies favored retention in early infections but removal in late infections.

CONCLUSIONS

The data on this topic remain heterogeneous and low in quality. Retention may be preferred in the setting of early infection, when the risk of underlying spine instability is still high and the risk of mature biofilm formation on the implants is low. However, late infections likely favor instrumentation removal. Higher-quality evidence from large, multicenter, prospective studies is needed to reach generalizable conclusions capable of guiding clinical practice.

Restricted access

Aymeric Amelot, Louis-Marie Terrier, Ann-Rose Cook, Pierre-Yves Borius, and Bertrand Mathon

Restricted access

James Feghali, Zach Pennington, Jeff Ehresman, Daniel Lubelski, Ethan Cottrill, A. Karim Ahmed, Andrew Schilling, and Daniel M. Sciubba

Symptomatic spinal metastasis occurs in around 10% of all cancer patients, 5%–10% of whom will require operative management. While postoperative survival has been extensively evaluated, postoperative health-related quality-of-life (HRQOL) outcomes have remained relatively understudied. Available tools that measure HRQOL are heterogeneous and may emphasize different aspects of HRQOL. The authors of this paper recommend the use of the EQ-5D and Spine Oncology Study Group Outcomes Questionnaire (SOSGOQ), given their extensive validation, to capture the QOL effects of systemic disease and spine metastases. Recent studies have identified preoperative QOL, baseline functional status, and neurological function as potential predictors of postoperative QOL outcomes, but heterogeneity across studies limits the ability to derive meaningful conclusions from the data. Future development of a valid and reliable prognostic model will likely require the application of a standardized protocol in the context of a multicenter study design.

Restricted access

Zach Pennington, Ethan Cottrill, Daniel Lubelski, Jeff Ehresman, Kurt Lehner, Mari L. Groves, Paul Sponseller, and Daniel M. Sciubba

OBJECTIVES

More than 7500 children undergo surgery for scoliosis each year, at an estimated annual cost to the health system of $1.1 billion. There is significant interest among patients, parents, providers, and payors in identifying methods for delivering quality outcomes at lower costs. Enhanced recovery after surgery (ERAS) protocols have been suggested as one possible solution. Here the authors conducted a systematic review of the literature describing the clinical and economic benefits of ERAS protocols in pediatric spinal deformity surgery.

METHODS

The authors identified all English-language articles on ERAS protocol use in pediatric spinal deformity surgery by using the following databases: PubMed/MEDLINE, Web of Science, Cochrane Reviews, EMBASE, CINAHL, and OVID MEDLINE. Quantitative analyses of comparative articles using random effects were performed for the following clinical outcomes: 1) length of stay (LOS); 2) complication rate; 3) wound infection rate; 4) 30-day readmission rate; 5) reoperation rate; and 6) postoperative pain scores.

RESULTS

Of 950 articles reviewed, 7 were included in the qualitative analysis and 6 were included in the quantitative analysis. The most frequently cited benefits of ERAS protocols were shorter LOS, earlier urinary catheter removal, and earlier discontinuation of patient-controlled analgesia pumps. Quantitative analyses showed ERAS protocols to be associated with shorter LOS (mean difference −1.12 days; 95% CI −1.51, −0.74; p < 0.001), fewer postoperative complications (OR 0.37; 95% CI 0.20, 0.68; p = 0.001), and lower pain scores on postoperative day (POD) 0 (mean −0.92; 95% CI −1.29, −0.56; p < 0.001) and POD 2 (−0.61; 95% CI −0.75, −0.47; p < 0.001). There were no differences in reoperation rate or POD 1 pain scores. ERAS-treated patients had a trend toward higher 30-day readmission rates and earlier discontinuation of patient-controlled analgesia (both p = 0.06). Insufficient data existed to reach a conclusion about cost differences.

CONCLUSIONS

The results of this systematic review suggest that ERAS protocols may shorten hospitalizations, reduce postoperative complication rates, and reduce postoperative pain scores in children undergoing scoliosis surgery. Publication biases exist, and therefore larger, prospective, multicenter data are needed to validate these results.

Restricted access

Zach Pennington, Ethan Cottrill, Daniel Lubelski, Jeff Ehresman, Nicholas Theodore, and Daniel M. Sciubba

OBJECTIVE

Spine surgery has been identified as a significant source of healthcare expenditures in the United States. Prolonged hospitalization has been cited as one source of increased spending, and there has been drive from providers and payors alike to decrease inpatient stays. One strategy currently being explored is the use of Enhanced Recovery After Surgery (ERAS) protocols. Here, the authors review the literature on adult spine ERAS protocols, focusing on clinical benefits and cost reductions. They also conducted a quantitative meta-analysis examining the following: 1) length of stay (LOS), 2) complication rate, 3) wound infection rate, 4) 30-day readmission rate, and 5) 30-day reoperation rate.

METHODS

Using the PRISMA guidelines, a search of the PubMed/Medline, Web of Science, Cochrane Reviews, Embase, CINAHL, and OVID Medline databases was conducted to identify all full-text articles in the English-language literature describing ERAS protocol implementation for adult spine surgery. A quantitative meta-analysis using random-effects modeling was performed for the identified clinical outcomes using studies that directly compared ERAS protocols with conventional care.

RESULTS

Of 950 articles reviewed, 34 were included in the qualitative analysis and 20 were included in the quantitative analysis. The most common protocol types were general spine surgery protocols and protocols for lumbar spine surgery patients. The most frequently cited benefits of ERAS protocols were shorter LOS (n = 12), lower postoperative pain scores (n = 6), and decreased complication rates (n = 4). The meta-analysis demonstrated shorter LOS for the general spine surgery (mean difference −1.22 days [95% CI −1.98 to −0.47]) and lumbar spine ERAS protocols (−1.53 days [95% CI −2.89 to −0.16]). Neither general nor lumbar spine protocols led to a significant difference in complication rates. Insufficient data existed to perform a meta-analysis of the differences in costs or postoperative narcotic use.

CONCLUSIONS

Present data suggest that ERAS protocol implementation may reduce hospitalization time among adult spine surgery patients and may lead to reductions in complication rates when applied to specific populations. To generate high-quality evidence capable of supporting practice guidelines, though, additional controlled trials are necessary to validate these early findings in larger populations.

Free access

Zach Pennington, Jeff Ehresman, Ethan Cottrill, Daniel Lubelski, Kurt Lehner, James Feghali, A. Karim Ahmed, Andrew Schilling, and Daniel M. Sciubba

Accurate prediction of patient survival is an essential component of the preoperative evaluation of patients with spinal metastases. Over the past quarter of a century, a number of predictors have been developed, although none have been accurate enough to be instituted as a staple of clinical practice. However, recently more comprehensive survival calculators have been published that make use of larger data sets and machine learning to predict postoperative survival among patients with spine metastases. Given the glut of calculators that have been published, the authors sought to perform a narrative review of the current literature, highlighting existing calculators along with the strengths and weaknesses of each. In doing so, they identify two “generations” of scoring systems—a first generation based on a priori factor weighting and a second generation comprising predictive tools that are developed using advanced statistical modeling and are focused on clinical deployment. In spite of recent advances, the authors found that most predictors have only a moderate ability to explain variation in patient survival. Second-generation models have a greater prognostic accuracy relative to first-generation scoring systems, but most still require external validation. Given this, it seems that there are two outstanding goals for these survival predictors, foremost being external validation of current calculators in multicenter prospective cohorts, as the majority have been developed from, and internally validated within, the same single-institution data sets. Lastly, current predictors should be modified to incorporate advances in targeted systemic therapy and radiotherapy, which have been heretofore largely ignored.

Free access

Jeff Ehresman, Zach Pennington, Aditya V. Karhade, Sakibul Huq, Ravi Medikonda, Andrew Schilling, James Feghali, Andrew Hersh, A. Karim Ahmed, Ethan Cottrill, Daniel Lubelski, Erick M. Westbroek, Joseph H. Schwab, and Daniel M. Sciubba

OBJECTIVE

Incidental durotomy is a common complication of elective lumbar spine surgery seen in up to 11% of cases. Prior studies have suggested patient age and body habitus along with a history of prior surgery as being associated with an increased risk of dural tear. To date, no calculator has been developed for quantifying risk. Here, the authors’ aim was to identify independent predictors of incidental durotomy, present a novel predictive calculator, and externally validate a novel method to identify incidental durotomies using natural language processing (NLP).

METHODS

The authors retrospectively reviewed all patients who underwent elective lumbar spine procedures at a tertiary academic hospital for degenerative pathologies between July 2016 and November 2018. Data were collected regarding surgical details, patient demographic information, and patient medical comorbidities. The primary outcome was incidental durotomy, which was identified both through manual extraction and the NLP algorithm. Multivariable logistic regression was used to identify independent predictors of incidental durotomy. Bootstrapping was then employed to estimate optimism in the model, which was corrected for; this model was converted to a calculator and deployed online.

RESULTS

Of the 1279 elective lumbar surgery patients included in this study, incidental durotomy occurred in 108 (8.4%). Risk factors for incidental durotomy on multivariable logistic regression were increased surgical duration, older age, revision versus index surgery, and case starts after 4 pm. This model had an area under curve (AUC) of 0.73 in predicting incidental durotomies. The previously established NLP method was used to identify cases of incidental durotomy, of which it demonstrated excellent discrimination (AUC 0.97).

CONCLUSIONS

Using multivariable analysis, the authors found that increased surgical duration, older patient age, cases started after 4 pm, and a history of prior spine surgery are all independent positive predictors of incidental durotomy in patients undergoing elective lumbar surgery. Additionally, the authors put forth the first version of a clinical calculator for durotomy risk that could be used prospectively by spine surgeons when counseling patients about their surgical risk. Lastly, the authors presented an external validation of an NLP algorithm used to identify incidental durotomies through the review of free-text operative notes. The authors believe that these tools can aid clinicians and researchers in their efforts to prevent this costly complication in spine surgery.

Free access

Jeff Ehresman, Zach Pennington, Andrew Schilling, Ravi Medikonda, Sakibul Huq, Kevin R. Merkel, A. Karim Ahmed, Ethan Cottrill, Daniel Lubelski, Erick M. Westbroek, Salia Farrokh, Steven M. Frank, and Daniel M. Sciubba

OBJECTIVE

Blood transfusions are given to approximately one-fifth of patients undergoing elective lumbar spine surgery, and previous studies have shown that transfusions are accompanied by increased complications and additional costs. One method for decreasing transfusions is administration of tranexamic acid (TXA). The authors sought to evaluate whether the cost of TXA is offset by the decrease in blood utilization in lumbar spine surgery patients.

METHODS

The authors retrospectively reviewed patients who underwent elective lumbar or thoracolumbar surgery for degenerative conditions at a tertiary care center between 2016 and 2018. Patients who received intraoperative TXA (TXA patients) were matched with patients who did not receive TXA (non-TXA patients) by age, sex, BMI, ASA (American Society of Anesthesiologists) physical status class, and surgical invasiveness score. Primary endpoints were intraoperative blood loss, number of packed red blood cell (PRBC) units transfused, and total hemostasis costs, defined as the sum of TXA costs and blood transfusion costs throughout the hospital stay. A subanalysis was then performed by substratifying both cohorts into short-length (1–4 levels) and long-length (5–8 levels) spinal constructs.

RESULTS

Of the 1353 patients who met inclusion criteria, 68 TXA patients were matched to 68 non-TXA patients. Patients in the TXA group had significantly decreased mean intraoperative blood loss (1039 vs 1437 mL, p = 0.01). There were no differences between the patient groups in the total costs of blood transfusion and TXA (p = 0.5). When the 2 patient groups were substratified by length of construct, the long-length construct group showed a significant net cost savings of $328.69 per patient in the TXA group (p = 0.027). This result was attributable to the finding that patients undergoing long-length construct surgeries who were given TXA received a lower amount of PRBC units throughout their hospital stay (2.4 vs 4.0, p = 0.007).

CONCLUSIONS

TXA use was associated with decreased intraoperative blood loss and significant reductions in total hemostasis costs for patients undergoing surgery on more than 4 levels. Furthermore, the use of TXA in patients who received short constructs led to no additional net costs. With the increasing emphasis put on value-based care interventions, use of TXA may represent one mechanism for decreasing total care costs, particularly in the cases of larger spine constructs.

Free access

Jeff Ehresman, Andrew Schilling, Zach Pennington, Chengcheng Gui, Xuguang Chen, Daniel Lubelski, A. Karim Ahmed, Ethan Cottrill, Majid Khan, Kristin J. Redmond, and Daniel M. Sciubba

OBJECTIVE

Vertebral compression fractures (VCFs) in patients with spinal metastasis can lead to destabilization and often carry a high risk profile. It is therefore important to have tools that enable providers to predict the occurrence of new VCFs. The most widely used tool for bone quality assessment, dual-energy x-ray absorptiometry (DXA), is not often available at a patient’s initial presentation and has limited sensitivity. While the Spinal Instability Neoplastic Score (SINS) has been associated with VCFs, it does not take patients’ baseline bone quality into consideration. To address this, the authors sought to develop an MRI-based scoring system to estimate trabecular vertebral bone quality (VBQ) and to assess this system’s ability to predict the occurrence of new VCFs in patients with spinal metastasis.

METHODS

Cases of adult patients with a diagnosis of spinal metastasis, who had undergone stereotactic body radiation therapy (SBRT) to the spine or neurosurgical intervention at a single institution between 2012 and 2019, were retrospectively reviewed. The novel VBQ score was calculated for each patient by dividing the median signal intensity of the L1–4 vertebral bodies by the signal intensity of cerebrospinal fluid (CSF). Multivariable logistic regression analysis was used to identify associations of demographic, clinical, and radiological data with new VCFs.

RESULTS

Among the 105 patients included in this study, 56 patients received a diagnosis of a new VCF and 49 did not. On univariable analysis, the factors associated with new VCFs were smoking status, steroid use longer than 3 months, the SINS, and the novel scoring system—the VBQ score. On multivariable analysis, only the SINS and VBQ score were significant predictors of new VCFs and, when combined, had a predictive accuracy of 89%.

CONCLUSIONS

As a measure of bone quality, the novel VBQ score significantly predicted the occurrence of new VCFs in patients with spinal metastases independent of the SINS. This suggests that baseline bone quality is a crucial factor that requires assessment when evaluating these patients’ conditions and that the VBQ score is a novel and simple MRI-based measure to accomplish this.