You are looking at 1 - 2 of 2 items for

  • Refine by Access: all x
  • By Author: Lonser, Russell R. x
  • By Author: Croteau, David x
Clear All
Restricted access

Russell R. Lonser, Katherine E. Warren, John A. Butman, Zenaide Quezado, R. Aaron Robison, Stuart Walbridge, Raphael Schiffman, Marsha Merrill, Marion L. Walker, Deric M. Park, David Croteau, Roscoe O. Brady, and Edward H. Oldfield

✓Recent preclinical studies have demonstrated that convection-enhanced delivery (CED) can be used to perfuse the brain and brainstem with therapeutic agents while simultaneously tracking their distribution using coinfusion of a surrogate magnetic resonance (MR) imaging tracer. The authors describe a technique for the successful clinical application of this drug delivery and monitoring paradigm to the brainstem. Two patients with progressive intrinsic brainstem lesions (one with Type 2 Gaucher disease and one with a diffuse pontine glioma) were treated with CED of putative therapeutic agents mixed with Gd–diethylenetriamene pentaacetic acid (DTPA). Both patients underwent frameless stereotactic placement of MR imaging–compatible outer guide–inner infusion cannulae. Using intraoperative MR imaging, accurate cannula placement was confirmed and real-time imaging during infusion clearly demonstrated progressive filling of the targeted region with the drug and Gd-DTPA infusate. Neither patient had clinical or imaging evidence of short- or long-term infusate-related toxicity. Using this technique, CED can be used to safely perfuse targeted regions of diseased brainstem with therapeutic agents. Coinfused imaging surrogate tracers can be used to monitor and control the distribution of therapeutic agents in vivo. Patients with a variety of intrinsic brainstem and other central nervous system disorders may benefit from a similar treatment paradigm.

Restricted access

David Croteau, Stuart Walbridge, Paul F. Morrison, John A. Butman, Alexander O. Vortmeyer, Dennis Johnson, Edward H. Oldfield, and Russell R. Lonser

Object. Convection-enhanced delivery (CED) is increasingly used to distribute therapeutic agents to locations in the central nervous system. The optimal application of convective distribution of various agents requires the development of imaging tracers to monitor CED in vivo in real time. The authors examined the safety and utility of an iodine-based low-molecular-weight surrogate tracer for computerized tomography (CT) scanning during CED.

Methods. Various volumes (total volume range 90–150 µ1) of iopamidol (MW 777 D) were delivered to the cerebral white matter of four primates (Macaca mulatta) by using CED. The distribution of this imaging tracer was determined by in vivo real-time and postinfusion CT scanning (≤ 5 days after infusion [one animal]) as well as by quantitative autoradiography (14C-sucrose [all animals] and 14C-dextran [one animal]), and compared with a mathematical model. Clinical observation (≤ 5 months) and histopathological analyses were used to evaluate the safety and toxicity of the tracer delivery.

Real-time CT scanning of the tracer during infusion revealed a clearly definable region of perfusion. The volume of distribution (Vd) increased linearly (r2 = 0.97) with an increasing volume of infusion (Vi). The overall Vd/Vi ratio was 4.1 ± 0.7 (mean ± standard deviation) and the distribution of infusate was homogeneous. Quantitative autoradiography confirmed the accuracy of the imaged distribution for a small (sucrose, MW 359 D) and a large (dextran, MW 70 kD) molecule. The distribution of the infusate was identifiable up to 72 hours after infusion. There was no clinical or histopathological evidence of toxicity in any animal.

Conclusions. Real-time in vivo CT scanning of CED of iopamidol appears to be safe, feasible, and suitable for monitoring convective delivery of drugs with certain features and low infusion volumes.