Browse

You are looking at 1 - 10 of 14 items for

  • Refine by Access: all x
  • By Author: Lawton, Michael T. x
  • By Author: Winkler, Ethan A. x
Clear All
Restricted access

Joseph H. Garcia, Ethan A. Winkler, Ramin A. Morshed, Alex Lu, Simon G. Ammanuel, Satvir Saggi, Elaina J. Wang, Steve Braunstein, Christine K. Fox, Heather J. Fullerton, Helen Kim, Daniel L. Cooke, Steven W. Hetts, Michael T. Lawton, Adib A. Abla, and Nalin Gupta

OBJECTIVE

Children with cerebral arteriovenous malformations (AVMs) can present with seizures, potentially increasing morbidity and impacting clinical management. However, the factors that lead to seizures as a presenting sign are not well defined. While AVM-related seizures have been described in case series, most studies have focused on adults and have included patients who developed seizures after an AVM rupture. To address this, the authors sought to analyze demographic and morphological characteristics of AVMs in a large cohort of children.

METHODS

The demographic, clinical, and AVM morphological characteristics of 189 pediatric patients from a single-center database were studied. Univariate and multivariate logistic regression models were used to test the effect of these characteristics on seizures as an initial presenting symptom in patients with unruptured brain AVMs.

RESULTS

Overall, 28 of 189 patients initially presented with seizures (14.8%). By univariate comparison, frontal lobe location (p = 0.02), larger AVM size (p = 0.003), older patient age (p = 0.04), and the Supplemented Spetzler-Martin (Supp-SM) grade (0.0006) were associated with seizure presentation. Multivariate analysis confirmed an independent effect of frontal lobe AVM location and higher Supp-SM grade. All patients presenting with seizures had AVMs in the cortex or subcortical white matter.

CONCLUSIONS

While children and adults share some risk factors for seizure presentation, their risk factor profiles do not entirely overlap. Pediatric patients with cortical AVMs in the frontal lobe were more likely to present with seizures. Additionally, the Supp-SM grade was highly associated with seizure presentation. Future clinical research should focus on the effect of therapeutic interventions targeting AVMs on seizure control in these patients.

Free access

Joseph H. Garcia, Ramin A. Morshed, Ethan A. Winkler, Yi Li, Christine K. Fox, Heather J. Fullerton, Caleb Rutledge, Angad S. Beniwal, Michael T. Lawton, Adib A. Abla, Nalin Gupta, and Steven W. Hetts

OBJECTIVE

Moyamoya is a progressive arteriopathy that predisposes patients to stroke due to stenosis of the intracranial internal carotid arteries and their proximal branches. Despite the morbidity caused by this condition, the ability to accurately predict prognosis for individual patients remains challenging. The goal of this study was to develop a systematic scoring method based on parenchymal findings on preoperative brain MRI to predict long-term outcomes for surgically treated pediatric patients with moyamoya.

METHODS

A retrospective surgical cohort of pediatric patients (≤ 18 years of age at the time of the initial surgery) with moyamoya from a single center were studied. Radiological variables with existing correlations between outcomes in moyamoya or other vascular diseases were chosen to score preoperative MRI based on easily defined parenchymal findings that could be rapidly assessed and used to make a numeric score. Calculated scores were correlated with clinical outcome measures using the Pearson correlation coefficient and area under the receiver operating characteristic curve (AUROC).

RESULTS

A total of 35 children with moyamoya disease or moyamoya syndrome were included in the study, with a median follow-up time of 2.6 years from the time of surgery. The pediatric moyamoya MRI score (PMMS) consists of ischemic changes (0–2; 0 = none, 1 = focal, 2 = diffuse), encephalomalacia (0–2; 0 = none, 1 = focal, 2 = diffuse), and hemorrhage (0–1; 0 = not present, 1 = present). PMMSs were highly correlated with pediatric modified Rankin Scale scores at the last follow-up (r = 0.7, 95% CI 0.44–0.84; p < 0.001) as a six-point scale, and when dichotomized (AUROC = 0.85).

CONCLUSIONS

The PMMS was found to be a simple tool based on preoperative MRI data that could be quickly and easily calculated and correlated with disability. This scoring method may aid future development of predictive models of outcomes for children with moyamoya disease and moyamoya syndrome.

Restricted access

Sen Gao, Jeffrey Nelson, Shantel Weinsheimer, Ethan A. Winkler, Caleb Rutledge, Adib A. Abla, Nalin Gupta, Joseph T. Shieh, Daniel L. Cooke, Steven W. Hetts, Tarik Tihan, Christopher P. Hess, Nerissa Ko, Brian P. Walcott, Charles E. McCulloch, Michael T. Lawton, Hua Su, Ludmila Pawlikowska, and Helen Kim

OBJECTIVE

Sporadic brain arteriovenous malformation (BAVM) is a tangled vascular lesion characterized by direct artery-to-vein connections that can cause life-threatening intracerebral hemorrhage (ICH). Recently, somatic mutations in KRAS have been reported in sporadic BAVM, and mutations in other mitogen-activated protein kinase (MAPK) signaling pathway genes have been identified in other vascular malformations. The objectives of this study were to systematically evaluate somatic mutations in MAPK pathway genes in patients with sporadic BAVM lesions and to evaluate the association of somatic mutations with phenotypes of sporadic BAVM severity.

METHODS

The authors performed whole-exome sequencing on paired lesion and blood DNA samples from 14 patients with sporadic BAVM, and 295 genes in the MAPK signaling pathway were evaluated to identify genes with somatic mutations in multiple patients with BAVM. Digital droplet polymerase chain reaction was used to validate KRAS G12V and G12D mutations and to assay an additional 56 BAVM samples.

RESULTS

The authors identified a total of 24 candidate BAVM-associated somatic variants in 11 MAPK pathway genes. The previously identified KRAS G12V and G12D mutations were the only recurrent mutations. Overall, somatic KRAS G12V was present in 14.5% of BAVM lesions and G12D was present in 31.9%. The authors did not detect a significant association between the presence or allelic burden of KRAS mutation and three BAVM phenotypes: lesion size (maximum diameter), age at diagnosis, and age at ICH.

CONCLUSIONS

The authors confirmed the high prevalence of somatic KRAS mutations in sporadic BAVM lesions and identified several candidate somatic variants in other MAPK pathway genes. These somatic variants may contribute to understanding of the etiology of sporadic BAVM and the clinical characteristics of patients with this condition.

Free access

Jan-Karl Burkhardt, Ethan A. Winkler, Joshua S. Catapano, Robert F. Spetzler, and Michael T. Lawton

OBJECTIVE

Studies of resection of brain arteriovenous malformations (AVMs) in the elderly population are scarce. This study examined factors influencing patient selection and surgical outcome among elderly patients.

METHODS

Patients 65 years of age and older who underwent resection of an unruptured or ruptured brain AVM treated by two surgeons at two centers were identified. Patient demographic characteristics, AVM characteristics, clinical presentation, and outcomes measured using the modified Rankin Scale (mRS) were analyzed. For subgroup analyses, patients were dichotomized into two age groups (group 1, 65–69 years old; group 2, ≥ 70 years old).

RESULTS

Overall, 112 patients were included in this study (group 1, n = 61; group 2, n = 51). Most of the patients presented with hemorrhage (71%), a small nidus (< 3 cm, 79%), and a low Spetzler-Martin (SM) grade (grade I or II, 63%) and were favorable surgical candidates according to the supplemented SM grade (supplemented SM grade < 7, 79%). A smaller AVM nidus was statistically significantly more likely to be present in patients with infratentorial AVMs (p = 0.006) and with a compact AVM nidus structure (p = 0.02). A larger AVM nidus was more likely to be treated with preoperative embolization (p < 0.001). Overall outcome was favorable (mRS scores 0–3) in 71% of the patients and was statistically independent from age group or AVM grading. Patients with ruptured AVMs at presentation had significantly better preoperative mRS scores (p < 0.001) and more favorable mRS scores at the last follow-up (p = 0.04) than patients with unruptured AVMs.

CONCLUSIONS

Outcomes were favorable after AVM resection in both groups of patients. Elderly patients with brain AVMs treated microsurgically were notable for small nidus size, AVM rupture, and low SM grades. Microsurgical resection is an important treatment modality for elderly patients with AVMs, and supplemented SM grading is a useful tool for the selection of patients who are most likely to achieve good neurological outcomes after resection.

Free access

Ethan A. Winkler, Alex Lu, Ramin A. Morshed, John K. Yue, W. Caleb Rutledge, Jan-Karl Burkhardt, Arati B. Patel, Simon G. Ammanuel, Steve Braunstein, Christine K. Fox, Heather J. Fullerton, Helen Kim, Daniel Cooke, Steven W. Hetts, Michael T. Lawton, Adib A. Abla, and Nalin Gupta

OBJECTIVE

Brain arteriovenous malformations (AVMs) consist of dysplastic blood vessels with direct arteriovenous shunts that can hemorrhage spontaneously. In children, a higher lifetime hemorrhage risk must be balanced with treatment-related morbidity. The authors describe a collaborative, multimodal strategy resulting in effective and safe treatment of pediatric AVMs.

METHODS

A retrospective analysis of a prospectively maintained database was performed in children with treated and nontreated pediatric AVMs at the University of California, San Francisco, from 1998 to 2017. Inclusion criteria were age ≤ 18 years at time of diagnosis and an AVM confirmed by a catheter angiogram.

RESULTS

The authors evaluated 189 pediatric patients with AVMs over the study period, including 119 ruptured (63%) and 70 unruptured (37%) AVMs. The mean age at diagnosis was 11.6 ± 4.3 years. With respect to Spetzler-Martin (SM) grade, there were 38 (20.1%) grade I, 40 (21.2%) grade II, 62 (32.8%) grade III, 40 (21.2%) grade IV, and 9 (4.8%) grade V lesions. Six patients were managed conservatively, and 183 patients underwent treatment, including 120 resections, 82 stereotactic radiosurgery (SRS), and 37 endovascular embolizations. Forty-four of 49 (89.8%) high-grade AVMs (SM grade IV or V) were treated. Multiple treatment modalities were used in 29.5% of low-grade and 27.3% of high-grade AVMs. Complete angiographic obliteration was obtained in 73.4% of low-grade lesions (SM grade I–III) and in 45.2% of high-grade lesions. A periprocedural stroke occurred in a single patient (0.5%), and there was 1 treatment-related death. The mean clinical follow-up for the cohort was 4.1 ± 4.6 years, and 96.6% and 84.3% of patients neurologically improved or remained unchanged in the ruptured and unruptured AVM groups following treatment, respectively. There were 16 bleeding events following initiation of AVM treatment (annual rate: 0.02 events per person-year).

CONCLUSIONS

Coordinated multidisciplinary evaluation and individualized planning can result in safe and effective treatment of children with AVMs. In particular, it is possible to treat the majority of high-grade AVMs with an acceptable safety profile. Judicious use of multimodality therapy should be limited to appropriately selected patients after thorough team-based discussions to avoid additive morbidity. Future multicenter studies are required to better design predictive models to aid with patient selection for multimodal pediatric care, especially with high-grade AVMs.

Free access

Jan-Karl Burkhardt, Michelle H. Chua, Ethan A. Winkler, W. Caleb Rutledge, and Michael T. Lawton

OBJECTIVE

During the microsurgical clipping of known aneurysms, angiographically occult (AO) aneurysms are sometimes found and treated simultaneously to prevent their growth and protect the patient from future rupture or reoperation. The authors analyzed the incidence, treatment, and outcomes associated with AO aneurysms to determine whether limited surgical exploration around the known aneurysm was safe and justified given the known limitations of diagnostic angiography.

METHODS

An AO aneurysm was defined as a saccular aneurysm detected using the operative microscope during dissection of a known aneurysm, and not detected on preoperative catheter angiography. A prospective database was retrospectively reviewed to identify patients with AO aneurysms treated microsurgically over a 20-year period.

RESULTS

One hundred fifteen AO aneurysms (4.0%) were identified during 2867 distinct craniotomies for aneurysm clipping. The most common locations for AO aneurysms were the middle cerebral artery (60 aneurysms, 54.1%) and the anterior cerebral artery (20 aneurysms, 18.0%). Fifty-six AO aneurysms (50.5%) were located on the same artery as the known saccular aneurysm. Most AO aneurysms (95.5%) were clipped and there was no attributed morbidity. The most common causes of failed angiographic detection were superimposition of a large aneurysm (type 1, 30.6%), a small aneurysm (type 2, 18.9%), or an adjacent normal artery (type 3, 36.9%). Multivariate analysis identified multiple known aneurysms (odds ratio [OR] 3.45, 95% confidence interval [CI] 2.16–5.49, p < 0.0001) and young age (OR 0.981, 95% CI 0.965–0.997, p = 0.0226) as independent predictors of AO aneurysms.

CONCLUSIONS

Meticulous inspection of common aneurysm sites within the surgical field will identify AO aneurysms during microsurgical dissection of another known aneurysm. Simultaneous identification and treatment of these additional undiagnosed aneurysms can spare patients later rupture or reoperation, particularly in those with multiple known aneurysms and a history of subarachnoid hemorrhage. Limited microsurgical exploration around a known aneurysm can be performed safely without additional morbidity.

Full access

Davis G. Taylor, Ching-Jen Chen, Thomas J. Buell, Min S. Park, J. Javier Provencio, and M. Yashar S. Kalani

Full access

Michael M. Safaee, Aaron J. Clark, Jan-Karl Burkhardt, Ethan A. Winkler, and Michael T. Lawton

OBJECTIVE

Spinal dural arteriovenous fistulas (dAVFs) are rare vascular abnormalities caused by arteriovenous shunting. They often form at the dural root sleeve between a radicular feeding artery and draining medullary vein causing venous congestion and edema, decreased perfusion, and ischemia of the spinal cord. Treatment consists of either surgical ligation of the draining vein or selective embolization via an endovascular approach. There is a paucity of data on which modality provides more durable and effective outcomes.

METHODS

The authors performed a retrospective review of a prospectively maintained database by the senior author to assess clinical outcomes in patients undergoing surgical treatment of spinal dAVFs. Preoperative and postoperative motor and Aminoff-Logue Scale (ALS) scores were collected.

RESULTS

A total of 41 patients with 44 spinal dAVFs were identified, with a mean patient age of 64 years. The mean symptom duration was 14 months, with weakness (82%), urinary symptoms (47%), and sensory symptoms (29%) at presentation. The fistula locations were as follows: 30 thoracic, 9 lumbar, 3 sacral, and 2 cervical. Five patients had normal motor and ALS scores at presentation. Among the remaining 36 patients with motor deficits or abnormal gait and micturition at presentation, 78% experienced an improvement while the remaining 22% continued to be stable. There was a trend toward improved outcomes in patients with shorter symptom duration; mean symptom duration among patients with clinical improvement was 13 months compared with 22 months among those without improvement. Additionally, rates of improvement were higher for lower thoracic and lumbosacral dAVFs (85% and 83%) compared with those in the upper thoracic spine (57%). No patient developed recurrent fistulas or worsening neurological deficits.

CONCLUSIONS

Surgery is associated with excellent outcomes in the treatment of spinal dAVFs. Early diagnosis and treatment are critical, with a trend toward improved outcomes. No patient in this study had fistula recurrence or worsening of symptoms. Among patients with abnormal motor or ALS scores, 78% improved after surgery. Therapeutic embolization is an option for some lesions, but for cases with unfavorable anatomy where embolization is not feasible, surgery is a safe option associated with high success.

Full access

Ethan A. Winkler, Harjus Birk, Jan-Karl Burkhardt, Xiaolin Chen, John K. Yue, Diana Guo, W. Caleb Rutledge, George F. Lasker, Carlene Partow, Tarik Tihan, Edward F. Chang, Hua Su, Helen Kim, Brian P. Walcott, and Michael T. Lawton

OBJECTIVE

Brain arteriovenous malformations (bAVMs) are rupture-prone tangles of blood vessels with direct shunting of blood flow between arterial and venous circulations. The molecular and/or cellular mechanisms contributing to bAVM pathogenesis and/or destabilization in sporadic lesions have remained elusive. Initial insights into AVM formation have been gained through models of genetic AVM syndromes. And while many studies have focused on endothelial cells, the contributions of other vascular cell types have yet to be systematically studied. Pericytes are multifunctional mural cells that regulate brain angiogenesis, blood-brain barrier integrity, and vascular stability. Here, the authors analyze the abundance of brain pericytes and their association with vascular changes in sporadic human AVMs.

METHODS

Tissues from bAVMs and from temporal lobe specimens from patients with medically intractable epilepsy (nonvascular lesion controls [NVLCs]) were resected. Immunofluorescent staining with confocal microscopy was performed to quantify pericytes (platelet-derived growth factor receptor–beta [PDGFRβ] and aminopeptidase N [CD13]) and extravascular hemoglobin. Iron-positive hemosiderin deposits were quantified with Prussian blue staining. Syngo iFlow post–image processing was used to measure nidal blood flow on preintervention angiograms.

RESULTS

Quantitative immunofluorescent analysis demonstrated a 68% reduction in the vascular pericyte number in bAVMs compared with the number in NVLCs (p < 0.01). Additional analysis demonstrated 52% and 50% reductions in the vascular surface area covered by CD13- and PDGFRβ-positive pericyte cell processes, respectively, in bAVMs (p < 0.01). Reductions in pericyte coverage were statistically significantly greater in bAVMs with prior rupture (p < 0.05). Unruptured bAVMs had increased microhemorrhage, as evidenced by a 15.5-fold increase in extravascular hemoglobin compared with levels in NVLCs (p < 0.01). Within unruptured bAVM specimens, extravascular hemoglobin correlated negatively with pericyte coverage (CD13: r = −0.93, p < 0.01; PDGFRβ: r = −0.87, p < 0.01). A similar negative correlation was observed with pericyte coverage and Prussian blue–positive hemosiderin deposits (CD13: r = −0.90, p < 0.01; PDGFRβ: r = −0.86, p < 0.01). Pericyte coverage positively correlated with the mean transit time of blood flow or the time that circulating blood spends within the bAVM nidus (CD13: r = 0.60, p < 0.05; PDGFRβ: r = 0.63, p < 0.05). A greater reduction in pericyte coverage is therefore associated with a reduced mean transit time or faster rate of blood flow through the bAVM nidus. No correlations were observed with time to peak flow within feeding arteries or draining veins.

CONCLUSIONS

Brain pericyte number and coverage are reduced in sporadic bAVMs and are lowest in cases with prior rupture. In unruptured bAVMs, pericyte reductions correlate with the severity of microhemorrhage. A loss of pericytes also correlates with a faster rate of blood flow through the bAVM nidus. This suggests that pericytes are associated with and may contribute to vascular fragility and hemodynamic changes in bAVMs. Future studies in animal models are needed to better characterize the role of pericytes in AVM pathogenesis.