You are looking at 1 - 3 of 3 items for :

  • Journal of Neurosurgery x
  • All content x
  • By Author: Krieg, Sandro M. x
  • By Author: Ringel, Florian x
  • By Author: Droese, Doris x
Clear All
Full access

Sebastian Ille, Nico Sollmann, Theresa Hauck, Stefanie Maurer, Noriko Tanigawa, Thomas Obermueller, Chiara Negwer, Doris Droese, Tobias Boeckh-Behrens, Bernhard Meyer, Florian Ringel, and Sandro M. Krieg


Language mapping by repetitive navigated transcranial magnetic stimulation (rTMS) is increasingly used and has already replaced functional MRI (fMRI) in some institutions for preoperative mapping of neurosurgical patients. Yet some factors affect the concordance of both methods with direct cortical stimulation (DCS), most likely by lesions affecting cortical oxygenation levels. Therefore, the impairment of the accuracy of rTMS and fMRI was analyzed and compared with DCS during awake surgery in patients with intraparenchymal lesions.


Language mapping was performed by DCS, rTMS, and fMRI using an object-naming task in 27 patients with left-sided perisylvian lesions, and the induced language errors of each method were assigned to the cortical parcellation system. Subsequently, the receiver operating characteristics were calculated for rTMS and fMRI and compared with DCS as ground truth for regions with (w/) and without (w/o) the lesion in the mapped regions.


The w/ subgroup revealed a sensitivity of 100% (w/o 100%), a specificity of 8% (w/o 5%), a positive predictive value of 34% (w/o: 53%), and a negative predictive value (NPV) of 100% (w/o: 100%) for the comparison of rTMS versus DCS. Findings for the comparison of fMRI versus DCS within the w/ subgroup revealed a sensitivity of 32% (w/o: 62%), a specificity of 88% (w/o: 60%), a positive predictive value of 56% (w/o: 62%), and a NPV of 73% (w/o: 60%).


Although strengths and weaknesses exist for both rTMS and fMRI, the results show that rTMS is less affected by a brain lesion than fMRI, especially when performing mapping of language-negative cortical regions based on sensitivity and NPV.

Full access

Sebastian Ille, Nico Sollmann, Theresa Hauck, Stefanie Maurer, Noriko Tanigawa, Thomas Obermueller, Chiara Negwer, Doris Droese, Claus Zimmer, Bernhard Meyer, Florian Ringel, and Sandro M. Krieg


Repetitive navigated transcranial magnetic stimulation (rTMS) is now increasingly used for preoperative language mapping in patients with lesions in language-related areas of the brain. Yet its correlation with intraoperative direct cortical stimulation (DCS) has to be improved. To increase rTMS's specificity and positive predictive value, the authors aim to provide thresholds for rTMS's positive language areas. Moreover, they propose a protocol for combining rTMS with functional MRI (fMRI) to combine the strength of both methods.


The authors performed multimodal language mapping in 35 patients with left-sided perisylvian lesions by using rTMS, fMRI, and DCS. The rTMS mappings were conducted with a picture-to-trigger interval (PTI, time between stimulus presentation and stimulation onset) of either 0 or 300 msec. The error rates (ERs; that is, the number of errors per number of stimulations) were calculated for each region of the cortical parcellation system (CPS). Subsequently, the rTMS mappings were analyzed through different error rate thresholds (ERT; that is, the ER at which a CPS region was defined as language positive in terms of rTMS), and the 2-out-of-3 rule (a stimulation site was defined as language positive in terms of rTMS if at least 2 out of 3 stimulations caused an error). As a second step, the authors combined the results of fMRI and rTMS in a predefined protocol of combined noninvasive mapping. To validate this noninvasive protocol, they correlated its results to DCS during awake surgery.


The analysis by different rTMS ERTs obtained the highest correlation regarding sensitivity and a low rate of false positives for the ERTs of 15%, 20%, 25%, and the 2-out-of-3 rule. However, when comparing the combined fMRI and rTMS results with DCS, the authors observed an overall specificity of 83%, a positive predictive value of 51%, a sensitivity of 98%, and a negative predictive value of 95%.


In comparison with fMRI, rTMS is a more sensitive but less specific tool for preoperative language mapping than DCS. Moreover, rTMS is most reliable when using ERTs of 15%, 20%, 25%, or the 2-out-of-3 rule and a PTI of 0 msec. Furthermore, the combination of fMRI and rTMS leads to a higher correlation to DCS than both techniques alone, and the presented protocols for combined noninvasive language mapping might play a supportive role in the language-mapping assessment prior to the gold-standard intraoperative DCS.

Restricted access

Sandro M. Krieg, Michael Schäffner, Ehab Shiban, Doris Droese, Thomas Obermüller, Jens Gempt, Bernhard Meyer, and Florian Ringel


Resection of gliomas in or adjacent to the motor system is widely performed using intraoperative neuromonitoring (IOM). For resection of cerebral metastases in motor-eloquent regions, however, data are sparse and IOM in such cases is not yet widely described. Since recent studies have shown that cerebral metastases infiltrate surrounding brain tissue, this study was undertaken to assess the value and influence of IOM during resection of supratentorial metastases in motor-eloquent regions.


Between 2006 and 2011, the authors resected 206 consecutive supratentorial metastases, including 56 in eloquent motor areas with monitoring of monopolar direct cortically stimulated motor evoked potentials (MEPs). The authors evaluated the relationship between the monitoring data and the course of surgery, clinical data, and postoperative imaging.


Motor evoked potential monitoring was successful in 53 cases (93%). Reduction of MEP amplitude correlated better with postoperative outcomes when the threshold for significant amplitude reduction was set at 80% (only > 80% reduction was considered significant decline) than when it was set at 50% (> 50% amplitude reduction was considered significant decline). Evidence of residual tumor was seen on MR images in 28% of the cases with significant MEP reduction. No residual tumor was seen in any case of stable MEP monitoring. Moreover, preoperative motor deficit, recursive partitioning analysis Class 3, and preoperative radiotherapy were independent risk factors for a new surgery-related motor weakness (occurring in 64% of patients with and 11% of patients without radiotherapy, p > 0.01).


Continuous MEP monitoring provides reliable monitoring of the motor system and also influences the course of operation in resection of cerebral metastases. However, in establishing warning criteria, only an amplitude decline > 80% of the baseline should be considered significant.