Browse

You are looking at 1 - 4 of 4 items for

  • Refine by Access: all x
  • By Author: Klimo, Paul x
  • By Author: Kumar, Rahul x
Clear All
Restricted access

David S. Hersh, Rahul Kumar, Paul Klimo Jr., Markus Bookland, and Jonathan E. Martin

OBJECTIVE

Late failure is a well-documented complication of cerebrospinal fluid shunt placement and, less commonly, endoscopic third ventriculostomy (ETV). However, standards regarding the frequency of clinical and radiological follow-up in these patients have not been defined. Here, the authors report on their survey of surgeons at sites for the Hydrocephalus Clinical Research Network (HCRN) or its implementation/quality improvement arm (HCRNq) to provide a cross-sectional overview of practice patterns.

METHODS

A 24-question survey was developed using the Research Electronic Data Capture (REDCap) platform and was distributed to the 138 pediatric neurosurgeons across 39 centers who participate in the HCRN or HCRNq. Survey questions were organized into three sections: 1) Demographics (5 questions), 2) Shunt Surveillance (12 questions), and 3) ETV Surveillance (7 questions).

RESULTS

A total of 122 complete responses were obtained, for an overall response rate of 88%. The majority of respondents have been in practice for more than 10 years (58%) and exclusively treat pediatric patients (79%). Most respondents consider hydrocephalus to have stabilized 1 month (21%) or 3 months (39%) after shunt surgery, and once stability is achieved, 72% then ask patients to return for routine clinical follow-up annually. Overall, 83% recommend lifelong clinical follow-up after shunt placement. Additionally, 75% obtain routine imaging studies in asymptomatic patients, although the specific imaging modality and frequency of imaging vary. The management of an asymptomatic increase in ventricle size or an asymptomatic catheter fracture also varies widely. Many respondents believe that hydrocephalus takes longer to stabilize after ETV than after shunt placement, reporting that they consider hydrocephalus to have stabilized 3 (28%), 6 (33%), or 12 (28%) months after an ETV. Although 68% of respondents have patients return annually for routine clinical follow-up after an ETV, only 56% recommend lifelong follow-up. The proportion of respondents who perform lifelong follow-up increases with greater practice experience (p = 0.01). Overall, 67% of respondents obtain routine imaging studies in asymptomatic patients after an ETV, with “rapid” MRI the study of choice for most respondents.

CONCLUSIONS

While there is a general consensus among pediatric neurosurgeons across North America that hydrocephalus patients should have long-term follow-up after shunt placement, radiological surveillance is characterized by considerable variety, as is follow-up after an ETV. Future work should focus on evaluating whether any one of these surveillance protocols is associated with improved outcomes.

Restricted access

David S. Hersh, Rahul Kumar, Paul Klimo Jr., Markus Bookland, and Jonathan E. Martin

OBJECTIVE

Late failure is a well-documented complication of cerebrospinal fluid shunt placement and, less commonly, endoscopic third ventriculostomy (ETV). However, standards regarding the frequency of clinical and radiological follow-up in these patients have not been defined. Here, the authors report on their survey of surgeons at sites for the Hydrocephalus Clinical Research Network (HCRN) or its implementation/quality improvement arm (HCRNq) to provide a cross-sectional overview of practice patterns.

METHODS

A 24-question survey was developed using the Research Electronic Data Capture (REDCap) platform and was distributed to the 138 pediatric neurosurgeons across 39 centers who participate in the HCRN or HCRNq. Survey questions were organized into three sections: 1) Demographics (5 questions), 2) Shunt Surveillance (12 questions), and 3) ETV Surveillance (7 questions).

RESULTS

A total of 122 complete responses were obtained, for an overall response rate of 88%. The majority of respondents have been in practice for more than 10 years (58%) and exclusively treat pediatric patients (79%). Most respondents consider hydrocephalus to have stabilized 1 month (21%) or 3 months (39%) after shunt surgery, and once stability is achieved, 72% then ask patients to return for routine clinical follow-up annually. Overall, 83% recommend lifelong clinical follow-up after shunt placement. Additionally, 75% obtain routine imaging studies in asymptomatic patients, although the specific imaging modality and frequency of imaging vary. The management of an asymptomatic increase in ventricle size or an asymptomatic catheter fracture also varies widely. Many respondents believe that hydrocephalus takes longer to stabilize after ETV than after shunt placement, reporting that they consider hydrocephalus to have stabilized 3 (28%), 6 (33%), or 12 (28%) months after an ETV. Although 68% of respondents have patients return annually for routine clinical follow-up after an ETV, only 56% recommend lifelong follow-up. The proportion of respondents who perform lifelong follow-up increases with greater practice experience (p = 0.01). Overall, 67% of respondents obtain routine imaging studies in asymptomatic patients after an ETV, with “rapid” MRI the study of choice for most respondents.

CONCLUSIONS

While there is a general consensus among pediatric neurosurgeons across North America that hydrocephalus patients should have long-term follow-up after shunt placement, radiological surveillance is characterized by considerable variety, as is follow-up after an ETV. Future work should focus on evaluating whether any one of these surveillance protocols is associated with improved outcomes.

Restricted access

Rahul Kumar, David S Hersh, Luke G. F Smith, William E Gordon, Nickalus R Khan, Andrew J Gienapp, Busra Gungor, Michael J Herr, Brandy N Vaughn, L. Madison Michael II, and Paul Klimo Jr.

OBJECTIVE

Neurosurgical residents receive exposure to the subspecialty of pediatric neurosurgery during training. The authors sought to determine resident operative experience in pediatric neurosurgery across Accreditation Council for Graduate Medical Education (ACGME)–accredited neurosurgical programs.

METHODS

During 2018–2019, pediatric neurosurgical case logs for recent graduates or current residents who completed their primary pediatric exposure were collected from US continental ACGME training programs. Using individual resident reports and procedure designations, operative volumes and case diversity were analyzed collectively, according to training site characteristics, and also correlated with the recently described Resident Experience Score (RES).

RESULTS

Of the 114 programs, a total of 316 resident case logs (range 1–19 residents per program) were received from 86 (75%) programs. The median cumulative pediatric case volume per resident was 109 (IQR 75–161). Residents at programs with a pediatric fellowship reported a higher median case volume (143, IQR 96–187) than residents at programs without (91, IQR 66–129; p < 0.0001). Residents at programs that outsource their pediatric rotation had a lower median case volume (84, IQR 52–114) compared with those at programs with an in-house experience (117, IQR 79–170; p < 0.0001). The case diversity index among all programs ranged from 0.61 to 0.80, with no statistically significant differences according to the Accreditation Council for Pediatric Neurosurgery Fellowships designation or pediatric experience site (p > 0.05). The RES correlated moderately (r = 0.44) with median operative volumes per program. A program’s annual pediatric operative volume and duration of pediatric experience were identified as significant predictive factors for median resident operative volume.

CONCLUSIONS

Resident experience in pediatric neurosurgery is variable within and between programs. Case volumes are generally higher for residents at programs with in-house exposure and an accredited fellowship, but case diversity is relatively uniform across all programs. RES provides some insight on anticipated case volume, but other unexplained factors remain.

Free access

David S. Hersh, Rahul Kumar, Kenneth A. Moore, Luke G. F. Smith, Christopher L. Tinkle, Jason Chiang, Zoltan Patay, Amar Gajjar, Asim F. Choudhri, Jorge A. Lee-Diaz, Brandy Vaughn, and Paul Klimo Jr.

OBJECTIVE

Biopsies of brainstem lesions are performed to establish a diagnosis in the setting of an atypical clinical or radiological presentation, or to facilitate molecular studies. A better understanding of the safety and diagnostic yield of brainstem biopsies would help guide appropriate patient selection.

METHODS

All patients who underwent biopsy of a brainstem lesion during the period from January 2011 to June 2019 were reviewed. Demographic, radiological, surgical, and outcome data were collected.

RESULTS

A total of 58 patients underwent 65 brainstem biopsies during the study period. Overall, the median age was 7.6 years (IQR 3.9–14.2 years). Twenty-two of the 65 biopsies (34%) were open, 42 (65%) were stereotactic, and 1 was endoscopic. In 3 cases (5%), a ventriculoperitoneal shunt was placed, and in 9 cases (14%), a posterior fossa decompression was performed during the same operative session as the biopsy. An intraoperative MRI (iMRI) was performed in 28 cases (43%). In 3 of these cases (11%), the biopsy was off target and additional samples were obtained during the same procedure. New neurological deficits were noted in 5 cases (8%), including sensory deficits, ophthalmoparesis/nystagmus, facial weakness, and hearing loss; these deficits persisted in 2 cases and were transient in 3 cases. A pseudomeningocele occurred in 1 patient; no patients developed a CSF leak or infection. In 8 cases (13%) an additional procedure was needed to obtain a diagnosis.

CONCLUSIONS

Brainstem biopsies are safe and effective. Target selection and approach should be a collaborative effort. iMRI can be used to assess biopsy accuracy in real time, thereby allowing any adjustment if necessary.