Browse

You are looking at 1 - 10 of 16 items for

  • Refine by Access: all x
  • By Author: Kassell, Neal F. x
  • By Author: Lee, Kevin S. x
Clear All
Restricted access

Zong-Fu Chen, Toshifumi Kamiryo, Scott L. Henson, Haruaki Yamamoto, Edward H. Bertram, Frank Schottler, Ferish Patel, Ladislau Steiner, Dheerendra Prasad, Neal F. Kassell, Shahrzad Shareghis, and Kevin S. Lee

Object. The management of intractable epilepsy remains a challenge, despite advances in its surgical and nonsurgical treatment. The identification of low-risk, low-cost therapeutic strategies that lead to improved outcome is therefore an important ongoing goal of basic and clinical research. Single-dose focal ionizing beam radiation delivered at necrosis- inducing and subnecrotic levels was investigated for its effects on seizure activity by using an established model of chronic recurrent spontaneous limbic seizures in rats.

Methods. A single 90-minute period of repetitive electrical stimulation (inducing stimulus) of the hippocampus in rats elicited a single episode of status epilepticus, followed by a 2- to 4-week seizure-free period. Spontaneous recurrent seizures developed subsequently and persisted for the duration of monitoring (2–10 months). Simultaneous computerized electroencephalography and video recording were used to monitor the animals. After the establishment of spontaneous recurrent seizures, bilateral radiation centered in the ventral hippocampal formation was administered with the Leksell gamma knife, aided by a stereotactic device custom made for small animals. A center dose of 10, 20, or 40 Gy was administered using a 4-mm collimator. Control animals were subjected to the same seizure-inducing stimulus but underwent a sham treatment instead of gamma irradiation.

In a second experiment, the authors examined the effects of gamma irradiation on the proclivity of hippocampal neurons to display epileptiform discharges. Naive animals were irradiated with a single 40-Gy dose, as already described. Slices of the hippocampus were prepared from animals killed between 1 and 178 days postirradiation. Sensitivity to penicillin-induced epileptiform spiking was examined in vitro in slices prepared from control and irradiated rat brains.

Conclusions. In the first experiment, single doses of 20 or 40 Gy (but not 10 Gy) reduced substantially, and in some cases eliminated, behaviorally and electrographically recognized seizures. Significant reductions in both the frequency and duration of spontaneous seizures were observed during a follow-up period of up to 10 months postradiation. Histological examination of the targeted region did not reveal signs of necrosis. These findings indicate that single-dose focal ionizing beam irradiation at subnecrotic dosages reduces or eliminates repetitive spontaneous seizures in a rat model of temporal lobe epilepsy. In the second experiment, synaptically driven neuronal firing was shown to be intact in hippocampal neurons subjected to 40-Gy doses. However, the susceptibility to penicillin-induced epileptiform activity was reduced in the brain slices of animals receiving 40-Gy doses, compared with those from control rats that were not irradiated. The results provide rational support for the utility of subnecrotic gamma irradiation as a therapeutic strategy for treating epilepsy. These findings also provide evidence that a functional increase in the seizure threshold of hippocampal neurons contributes to the anticonvulsant influence of subnecrotic gamma irradiation.

Restricted access

Tomikatsu Toyoda, Neal F. Kassell, and Kevin S. Lee

Object. Inflammatory responses and oxygen free radicals have increasingly been implicated in the development of ischemic brain injury. In some cases, an attenuation of inflammation or free-radical injury can provide tissue protection. Diphosphoryl lipid A (DPL) is a detoxified derivative of a lipopolysaccharide (endotoxin) of Salmonella minnesota strain R595, which is capable of stimulating the immune system without eliciting direct toxic effects. In this study the authors examined the influence of preconditioning with DPL on ischemia/reperfusion injury in rats.

Methods. Sprague—Dawley rats were injected intravenously with either DPL or vehicle. Twenty-four hours later, some animals were tested for superoxide dismutase (SOD) activity. Others were subjected to a 3-hour period of focal cerebral ischemia and, after a reperfusion period of 24 hours, were killed. Infarction volume, SOD activity, and myeloperoxidase (MPO) activity were assayed in the postischemic animals.

Pretreatment with DPL produced significant reductions in cerebral infarction and MPO activity in the ischemic penumbra. A significant enhancement of basal SOD activity was observed 24 hours after DPL treatment (that is, before ischemia), and a further enhancement of SOD activity was seen in the ischemic penumbra 24 hours after reperfusion.

Conclusions. These data provide the first evidence of a neuroprotective effect of preconditioning with DPL in an in vivo model of cerebral ischemia. Although the precise mechanisms through which DPL exerts its neuroprotective influence remain to be established, an inhibition of the complex inflammatory response to ischemia and an enhancement of endogenous antioxidant activity are leading candidates.

Restricted access

Richard S. Polin, Murad Bavbek, Mark E. Shaffrey, Kevin Billups, Christopher A. Bogaev, Neal F. Kassell, and Kevin S. Lee

Object. The goal of this study was to explore whether the levels of soluble adhesion molecules were elevated in cerebrospinal fluid (CSF) after subarachnoid hemorrhage (SAH). This association was suggested by the known inflammatory response in vasospasm and the role of vascular adhesion molecules in regulating leukocytic adhesion to, and migration across, vascular endothelium.

Methods. A prospective analysis was performed on CSF samples obtained in 17 patients who had suffered a recent aneurysmal SAH and in 16 control patients by using quantitative enzyme-linked immunosorbent assays for E-selectin, intercellular adhesion molecule—1 (ICAM—1), vascular adhesion molecule—1 (VCAM-1), and L-selectin.

Levels of soluble forms of E-selectin (p = 0.0013), ICAM-1 (p = 0.0001), and VCAM-1 (p = 0.048) were found to be elevated in the CSF of patients after SAH compared with levels in the CSF of normal controls, patients with unruptured aneurysms, and patients tested months after SAH occurred. In addition, individual patients tested at the time of their initial ictus demonstrated a fall in adhesion molecule levels over time. Levels of E-selectin (p = 0.044) were highest in patients who later developed moderate or severe vasospasm.

Conclusions. Adhesion molecules are known to be involved in white cell adherence to the endothelium and subsequent diapedesis and migration in which a role in initiation of tissue damage is postulated. The authors have demonstrated the elevation of three adhesion molecules, with severely elevated levels of E-selectin seen in patients who later develop vasospasm. A correlation with a role of vascular adhesion molecules in the pathogenesis of cerebral vasospasm is suggested.

Restricted access

Tomikatsu Toyoda, Aij-Lie Kwan, Murad Bavbek, Neal F. Kassell, John E. Wanebo, and Kevin S. Lee

Object. Monophosphoryl lipid A (MPL) and diphosphoryl lipid (DPL) are derivatives of the lipopolysaccharide (endotoxin) of Salmonella minnesota strain R595. Monophosphoryl lipid A is relatively nontoxic and can stimulate the natural defense or immune system. Diphosphoryl lipid is relatively toxic; however, at higher concentrations, it can also stimulate an immune response. The purpose of the present study was to determine the effects of these endotoxin analogs on cerebral vasospasm after the onset of subarachnoid hemorrhage (SAH) in rabbits.

Methods. Intrathecal administration of MPL or DPL (5 µg/kg) was performed immediately before and 24 hours after induction of SAH in New Zealand White rabbits. Forty-eight hours after induction of SAH, the animals were killed by perfusion fixation for morphometric analyses of vessels or perfused with saline and assayed for superoxide dismutase (SOD) activity. Additional rabbits were administered MPL or DPL and killed 24 hours later for assessment of SOD activity; no SAH was induced in these animals.

Experimental SAH elicited spasm of the basilar arteries in each group. Vasospasm was markedly attenuated in animals treated with MPL (p < 0.01 compared with vehicle-treated animals), but not in animals treated with DPL. A substantial reduction in SOD activity in the basilar artery accompanied the vasospasm; this loss of activity was significantly blocked by treatment with MPL, but not DPL. In animals that were not subjected to experimental SAH, MPL elicited a significant increase in SOD activity over basal levels, whereas DPL was ineffective.

Conclusions. These data provide evidence of a marked protective effect of the endotoxin analog MPL against vasospasm. Although the mechanism(s) responsible for the protective effect of MPL remains to be verified, an enhancement of basal antioxidant activity and an inhibition of SAH-induced loss of this activity are attractive candidates. An MPL-based therapy could represent a useful addition to current therapies for SAH-induced cerebral injury.

Full access

John E. Wanebo, Hunter G. Louis, Adam S. Arthur, Jie Zhou, Neal F. Kassell, Kevin S. Lee, and Gregory A. Helm

Cerebral vasospasm is a major complication of subarachnoid hemorrhage (SAH) after the rupture of an intracranial aneurysm. Although the cause of cerebral vasospasm has not been fully established, several lines of evidence suggest that the vasoconstrictor peptide endothelin (ET) may play a crucial role. In the present study the potential of TBC 11251 (TBC), a newly developed ETA receptor antagonist, to prevent and/or reverse cerebral vasospasm was examined in a well-established rabbit model of SAH.

Sixty-five New Zealand White rabbits were assigned to one of six groups. Experimental SAH was induced in rabbits comprising five of the groups by injecting autologous arterial blood into the cisterna magna. The treatment groups were as follows: 1) control (no SAH); 2) SAH only; 3) SAH + placebo at 24 and 36 hours (24/36); 4) SAH + TBC (24/36); 5) SAH + placebo twice daily (BID); and 6) SAH + TBC BID. All drug-treated animals received an intravenous dosage of 5 mg/kg TBC. After 48 hours, the animals were killed by intracardiac perfusion with fixative. The brainstems were removed and the basilar arteries (BAs) were prepared for histological examination. The cross-sectional area of each BA was measured using computer-assisted videomicroscopy by an investigator blind to the group from which it came. A one-way analysis of variance and paired group mean comparisons with the post-hoc Fisher least significant difference test were used for analysis of BA diameters and physiological parameters.

The model provided reliable vasospasm, with the mean BA cross-sectional area constricting from 0.388 mm2 in the control group to 0.106 mm2 (27.4% of control) in the SAH only group. Treatment with TBC (24/36) after SAH (reversal protocol) produced a mean BA area of 0.175 mm2 (44.2% of control) which, although larger than the placebo group value of 0.135 mm2 (39.9% of control), was not statistically significant. However, treatment with TBC BID (prevention protocol) produced a mean BA area of 0.303 mm2 (78.1% of control) compared with the placebo BID value of 0.134 mm2 (34.6% of control); this effect was statistically significant (p < 0.01). There were no side effects noted and no differences in the mean arterial pressures between drug and placebo groups.

These findings demonstrate that systemic administration of the ETA receptor antagonist TBC significantly attenuates cerebral vasospasm after SAH when given as a preventative therapy, and they provide additional support for the role of ET in the establishment of vasospasm.

Full access

Barbara Cappelletto, Hakan H. Caner, Frank Schottler, Aij-Lie Kwan, David Eveleth, Patricia L. Foley, Neal F. Kassell, and Kevin S. Lee

Calcium-activated proteolysis mediated by the protease inhibitor, calpain, has recently been implicated in the pathogenesis of cerebral vasospasm. The effect of one inhibitor of calcium-activated proteolysis, z-Leu-Phe-CONH-morpholene (zLF), on cerebrovascular constriction was examined in two experimental paradigms. In the first paradigm, the rabbit basilar artery (BA) was visualized via a transclival exposure, and its diameter was monitored using videomicroscopy. In the second experimental paradigm two intracisternal injections of autologous blood were administered to mimic a subarachnoid hemorrhage (SAH). The BA was visualized via the transclival exposure, and its luminal diameter was measured. Topical application of oxyhemoglobin (OxyHb), a known pathogenic agent in cerebral vasospasm, elicited vasoconstriction in normal animals, reducing arterial diameter to approximately 75% of resting levels. Pretreatment with zLF (100, 200, or 300 μM) attenuated vasoconstriction induced by OxyHb. In an experimental model of SAH, the diameter of the BA was reduced after the first injection of blood to approximately 67% of normal resting levels when measured 3 to 4 days later. This vasospastic response was reversed significantly by topical application of zLF (100 μM); vascular diameter was increased to approximately 84% of normal resting levels.

These findings demonstrate that both acute OxyHb-induced constriction and blood-induced vasospasm are sensitive to an inhibitor of the proteolytic enzyme, calpain. Together, these observations indicate an important role for calcium-activated proteolysis in the development and maintenance of vasospasm after SAH. In addition, it may be inferred from the data that inhibitors of calcium-activated proteolysis may be useful therapeutic agents for treating this form of cerebrovascular disease.

Restricted access

Aij-Lie Kwan, Murad Bavbek, Arco Y. Jeng, Wieslawa Maniara, Tomikatsu Toyoda, Rodney W. Lappe, Neal F. Kassell, and Kevin S. Lee

✓ Delayed cerebral ischemia due to cerebral vasospasm is a major cause of morbidity and mortality in patients with aneurysmal subarachnoid hemorrhage (SAH). Increasing evidence implicates the potent vasoconstrictor peptide endothelin (ET) in the pathophysiology of cerebral vasospasm. In the present study the authors examined the therapeutic value of blocking the production of ET-1 by inhibiting the conversion of its relatively inactive precursor, Big ET-1, to a physiologically active form. An inhibitor of ET-converting enzyme (ECE), CGS 26303, was injected intravenously after inducing SAH in New Zealand white rabbits. Injections of CGS 26303 were initiated either 1 hour after SAH (prevention protocol) or 24 hours after SAH (reversal protocol). One of three concentrations (3, 10, or 30 mg/kg) of CGS 26303 was injected twice daily, and all animals were killed by perfusion fixation 48 hours after SAH occurred. Basilar arteries were removed and sectioned, and their cross-sectional areas were measured in a blind manner by using computer-assisted videomicroscopy.

Treatment with CGS 26303 attenuated arterial narrowing after SAH in both the prevention and reversal protocols. The protective effect of CGS 26303 achieved statistical significance at all dosages in the prevention protocol and at 30 mg/kg in the reversal protocol. These findings demonstrate that inhibiting the conversion of Big ET-1 to ET-1 via intravenous administration of an ECE inhibitor can be an effective strategy for limiting angiographic vasospasm after SAH. Moreover, the results demonstrate that treatment with the ECE inhibitor is capable of reducing vasospasm even when initiated after the process of arterial narrowing has begun. Finally, the results provide further support for the role of ET in the establishment of cerebral vasospasm. The ECE inhibitor CGS 26303 thus represents a promising therapeutic agent for the treatment of cerebral vasospasm following aneurysmal SAH.

Restricted access
Restricted access

Hakan H. Caner, Aij-Lie Kwan, Adam Arthur, Arco Y. Jeng, Rodney W. Lappe, Neal F. Kassell, and Kevin S. Lee

✓ The potent vasoconstrictor peptide, endothelin-1 (ET-1), has been implicated in the pathophysiology of cerebral vasospasm that occurs after subarachnoid hemorrhage (SAH). This peptide is synthesized as a large prepropeptide that requires a series of modifying steps for its activation. The last of these steps involves the proteolytic conversion of a relatively inactive propeptide, Big ET-1, to its active, 21—amino acid peptide form. The enzyme responsible for converting Big ET-1 to ET-1 is a metalloprotease called endothelin-converting enzyme (ECE). In the present study the authors examined the effects of a newly developed inhibitor of ECE on responses to ET peptides in the normal basilar artery and on pathophysiological constriction in the spastic basilar artery after SAH.

In the first series of experiments the authors examined normal basilar arteries in the rabbit, which were exposed transclivally and measured on-line using videomicroscopy. Intravenous administration or topical application of an active inhibitor of ECE, CGS 26303, blocked vasoconstrictor responses to topically applied Big ET-1 but not to ET-1. In contrast, topical application of a structurally related compound that does not inhibit ECE, CGS 24592, was ineffective in blocking vasoconstriction that was elicited by a topical application of Big ET-1. These findings indicate that CGS 26303 when administered systemically is capable of blocking the conversion of Big ET-1 to ET-1 in the basilar artery without affecting the ability of the vessel to respond to ET-1. In the second series of experiments the authors examined the effects of the ECE inhibitor on cerebral vasospasm after experimental SAH. Intraperitoneal administration of CGS 26303 via osmotic minipumps significantly attenuated the delayed spastic response of the basilar artery to an intracisternal injection of autologous blood.

This study provides the first evidence that systemic administration of an inhibitor of ECE is capable of preventing cerebral vasospasm after SAH. The results reinforce a growing body of evidence that ETs play a critical role in the development of spastic constriction after SAH. Moreover, the findings indicate that blocking the conversion of Big ET-1 to its active ET-1 form using CGS 26303 may represent a feasible strategy for ameliorating cerebral vasospasm.

Restricted access

Satoshi Suzuki, Neal F. Kassell, and Kevin S. Lee

✓ Hemin is a prominent breakdown product of hemoglobin, and high levels of hemin are found in the cerebrospinal fluid during subarachnoid hemorrhage—induced vasospasm. The possible role of hemin in modifying vascular function was examined in the present study by testing its effects on nitric oxide synthase (NOS) activity in cultured rat aortic smooth-muscle cells. Nitric oxide synthase activity was estimated from the amounts of accumulated nitrite and nitrate, which are oxidative products of nitric oxide (NO). Hemin (1–100 µM) increased the levels of nitrite and nitrate in culture medium in a dose- and time-dependent manner. The hemin-induced elevation of nitrite and nitrate was inhibited significantly by the NOS inhibitor, Nω-nitro-l-arginine (300 µM), and by the protein synthesis inhibitor, cycloheximide (5 µg/ml). These results indicate that hemin is capable of stimulating the expression of an inducible isoform of NOS (iNOS) in vascular smooth muscle. Transcriptional expression of iNOS is known to cause injurious effects on the maintenance of cellular homeostasis by generating extremely high levels of NO. The generation of hemin from methemoglobin during hemolysis of a subarachnoid blood clot could therefore stimulate an excessive production of NO in vascular smooth-muscle cells. It is postulated that this series of events contributes to the development of vascular injury associated with cerebral vasospasm after aneurysmal subarachnoid hemorrhage.