Browse

You are looking at 1 - 6 of 6 items for

  • Refine by Access: all x
  • By Author: Grant, Gerald A. x
  • By Author: Ho, Allen L. x
Clear All
Free access

Yuhao Huang, Derek Yecies, Lisa Bruckert, Jonathon J. Parker, Allen L. Ho, Lily H. Kim, Linden Fornoff, Max Wintermark, Brenda Porter, Kristen W. Yeom, Casey H. Halpern, and Gerald A. Grant

OBJECTIVE

Completion corpus callosotomy can offer further remission from disabling seizures when a prior partial corpus callosotomy has failed and residual callosal tissue is identified on imaging. Traditional microsurgical approaches to section residual fibers carry risks associated with multiple craniotomies and the proximity to the medially oriented motor cortices. Laser interstitial thermal therapy (LITT) represents a minimally invasive approach for the ablation of residual fibers following a prior partial corpus callosotomy. Here, the authors report clinical outcomes of 6 patients undergoing LITT for completion corpus callosotomy and characterize the radiological effects of ablation.

METHODS

A retrospective clinical review was performed on a series of 6 patients who underwent LITT completion corpus callosotomy for medically intractable epilepsy at Stanford University Medical Center and Lucile Packard Children’s Hospital at Stanford between January 2015 and January 2018. Detailed structural and diffusion-weighted MR images were obtained prior to and at multiple time points after LITT. In 4 patients who underwent diffusion tensor imaging (DTI), streamline tractography was used to reconstruct and evaluate tract projections crossing the anterior (genu and rostrum) and posterior (splenium) parts of the corpus callosum. Multiple diffusion parameters were evaluated at baseline and at each follow-up.

RESULTS

Three pediatric (age 8–18 years) and 3 adult patients (age 30–40 years) who underwent completion corpus callosotomy by LITT were identified. Mean length of follow-up postoperatively was 21.2 (range 12–34) months. Two patients had residual splenium, rostrum, and genu of the corpus callosum, while 4 patients had residual splenium only. Postoperative complications included asymptomatic extension of ablation into the left thalamus and transient disconnection syndrome. Ablation of the targeted area was confirmed on immediate postoperative diffusion-weighted MRI in all patients. Engel class I–II outcomes were achieved in 3 adult patients, whereas all 3 pediatric patients had Engel class III–IV outcomes. Tractography in 2 adult and 2 pediatric patients revealed time-dependent reduction of fractional anisotropy after LITT.

CONCLUSIONS

LITT is a safe, minimally invasive approach for completion corpus callosotomy. Engel outcomes for completion corpus callosotomy by LITT were similar to reported outcomes of open completion callosotomy, with seizure reduction primarily observed in adult patients. Serial DTI can be used to assess the presence of tract projections over time but does not classify treatment responders or nonresponders.

Full access

Allen L. Ho, Yagmur Muftuoglu, Arjun V. Pendharkar, Eric S. Sussman, Brenda E. Porter, Casey H. Halpern, and Gerald A. Grant

OBJECTIVE

Stereoelectroencephalography (SEEG) has increased in popularity for localization of epileptogenic zones in drug-resistant epilepsy because safety, accuracy, and efficacy have been well established in both adult and pediatric populations. Development of robot-guidance technology has greatly enhanced the efficiency of this procedure, without sacrificing safety or precision. To date there have been very limited reports of the use of this new technology in children. The authors present their initial experience using the ROSA platform for robot-guided SEEG in a pediatric population.

METHODS

Between February 2016 and October 2017, 20 consecutive patients underwent robot-guided SEEG with the ROSA robotic guidance platform as part of ongoing seizure localization and workup for medically refractory epilepsy of several different etiologies. Medical and surgical history, imaging and trajectory plans, as well as operative records were analyzed retrospectively for surgical accuracy, efficiency, safety, and epilepsy outcomes.

RESULTS

A total of 222 leads were placed in 20 patients, with an average of 11.1 leads per patient. The mean total case time (± SD) was 297.95 (± 52.96) minutes and the mean operating time per lead was 10.98 minutes/lead, with improvements in total (33.36 minutes/lead vs 21.76 minutes/lead) and operative (13.84 minutes/lead vs 7.06 minutes/lead) case times/lead over the course of the study. The mean radial error was 1.75 (± 0.94 mm). Clinically useful data were obtained from SEEG in 95% of cases, and epilepsy surgery was indicated and performed in 95% of patients. In patients who underwent definitive epilepsy surgery with at least a 3-month follow-up, 50% achieved an Engel class I result (seizure freedom). There were no postoperative complications associated with SEEG placement and monitoring.

CONCLUSIONS

In this study, the authors demonstrate that rapid adoption of robot-guided SEEG is possible even at a SEEG-naïve institution, with minimal learning curve. Use of robot guidance for SEEG can lead to significantly decreased operating times while maintaining safety, the overall goals of identification of epileptogenic zones, and improved epilepsy outcomes.

Free access

Allen L. Ho, Austin Y. Feng, Lily H. Kim, Arjun V. Pendharkar, Eric S. Sussman, Casey H. Halpern, and Gerald A. Grant

Stereoelectroencephalography (SEEG) is an intracranial diagnostic measure that has grown in popularity in the United States as outcomes data have demonstrated its benefits and safety. The main uses of SEEG include 1) exploration of deep cortical/sulcal structures; 2) bilateral recordings; and 3) 3D mapping of epileptogenic zones. While SEEG has gradually been accepted for treatment in adults, there is less consensus on its utility in children. In this literature review, the authors seek to describe the current state of SEEG with a focus on the more recent technology-enabled surgical techniques and demonstrate its efficacy in the pediatric epilepsy population.

Full access

Allen L. Ho, John G. D. Cannon, Jyodi Mohole, Arjun V. Pendharkar, Eric S. Sussman, Gordon Li, Michael S. B. Edwards, Samuel H. Cheshier, and Gerald A. Grant

OBJECTIVE

Topical antimicrobial compounds are safe and can reduce cost and complications associated with surgical site infections (SSIs). Topical vancomycin has been an effective tool for reducing SSIs following routine neurosurgical procedures in the spine and following adult craniotomies. However, widespread adoption within the pediatric neurosurgical community has not yet occurred, and there are no studies to report on the safety and efficacy of this intervention. The authors present the first institution-wide study of topical vancomycin following open craniotomy in the pediatric population.

METHODS

In this retrospective study the authors reviewed all open craniotomies performed over a period from 05/2014 to 12/2016 for topical vancomycin use, SSIs, and clinical variables associated with SSI. Topical vancomycin was utilized as an infection prophylaxis and was applied as a liquid solution following replacement of a bone flap or after dural closure when no bone flap was reapplied.

RESULTS

Overall, 466 consecutive open craniotomies were completed between 05/2014 and 12/2016, of which 43% utilized topical vancomycin. There was a 1.5% SSI rate in the nontopical cohort versus 0% in the topical vancomycin cohort (p = 0.045). The number needed to treat was 66. There were no significant differences in risk factors for SSI between cohorts. There were no complications associated with topical vancomycin use.

CONCLUSIONS

Routine topical vancomycin administration during closure of open craniotomies can be a safe and effective tool for reducing SSIs in the pediatric neurosurgical population.

Free access

James Pan, Jennifer L. Quon, Eli Johnson, Bryan Lanzman, Anjeza Chukus, Allen L. Ho, Michael S. B. Edwards, Gerald A. Grant, and Kristen W. Yeom

OBJECTIVE

Fast magnetic resonance imaging (fsMRI) sequences are single-shot spin echo images with fast acquisition times that have replaced CT scans for many conditions. Introduced as a means of evaluating children with hydrocephalus and macrocephaly, these sequences reduce the need for anesthesia and can be more cost-effective, especially for children who require multiple surveillance scans. However, the role of fsMRI has yet to be investigated in evaluating the posterior fossa in patients with Chiari I abnormality (CM-I). The goal of this study was to examine the diagnostic performance of fsMRI in evaluating the cerebellar tonsils in comparison to conventional MRI.

METHODS

The authors performed a retrospective analysis of 18 pediatric patients with a confirmed diagnosis of CM-I based on gold-standard conventional brain MRI and 30 controls without CM-I who had presented with various neurosurgical conditions. The CM-I patients were included if fsMRI studies had been obtained within 1 year of conventional MRI with no surgical intervention between the studies. Two neuroradiologists reviewed the studies in a blinded fashion to determine the diagnostic performance of fsMRI in detecting CM-I. For the CM-I cohort, the fsMRI and T2-weighted MRI exams were randomized, and the blinded reviewers performed tonsillar measurements on both scans.

RESULTS

The mean age of the CM-I cohort was 7.39 years, and 50% of these subjects were male. The mean time interval between fsMRI and conventional T2-weighted MRI was 97.8 days. Forty-four percent of the subjects had undergone imaging after posterior fossa decompression. The sensitivity and specificity of fsMRI in detecting CM-I was 100% (95% CI 71.51%–100%) and 92.11% (95% CI 78.62%–98.34%), respectively. If only preoperative patients are considered, both sensitivity and specificity increase to 100%. The authors also performed a cost analysis and determined that fsMRI was significantly cost-effective compared to T2-weighted MRI or CT.

CONCLUSIONS

Despite known limitations, fsMRI may serve as a useful diagnostic and surveillance tool for CM-I. It is more cost-effective than full conventional brain MRI and decreases the need for sedation in young children.

Full access

Allen L. Ho, Eric S. Sussman, Arjun V. Pendharkar, Scheherazade Le, Alessandra Mantovani, Alaine C. Keebaugh, David R. Drover, Gerald A. Grant, Max Wintermark, and Casey H. Halpern

OBJECTIVE

MR-guided laser interstitial thermal therapy (MRgLITT) is a minimally invasive method for thermal destruction of benign or malignant tissue that has been used for selective amygdalohippocampal ablation for the treatment of temporal lobe epilepsy. The authors report their initial experience adopting a real-time MRI-guided stereotactic platform that allows for completion of the entire procedure in the MRI suite.

METHODS

Between October 2014 and May 2016, 17 patients with mesial temporal sclerosis were selected by a multidisciplinary epilepsy board to undergo a selective amygdalohippocampal ablation for temporal lobe epilepsy using MRgLITT. The first 9 patients underwent standard laser ablation in 2 phases (operating room [OR] and MRI suite), whereas the next 8 patients underwent laser ablation entirely in the MRI suite with the ClearPoint platform. A checklist specific to the real-time MRI-guided laser amydalohippocampal ablation was developed and used for each case. For both cohorts, clinical and operative information, including average case times and accuracy data, was collected and analyzed.

RESULTS

There was a learning curve associated with using this real-time MRI-guided system. However, operative times decreased in a linear fashion, as did total anesthesia time. In fact, the total mean patient procedure time was less in the MRI cohort (362.8 ± 86.6 minutes) than in the OR cohort (456.9 ± 80.7 minutes). The mean anesthesia time was significantly shorter in the MRI cohort (327.2 ± 79.9 minutes) than in the OR cohort (435.8 ± 78.4 minutes, p = 0.02).

CONCLUSIONS

The real-time MRI platform for MRgLITT can be adopted in an expedient manner. Completion of MRgLITT entirely in the MRI suite may lead to significant advantages in procedural times.