Browse

You are looking at 1 - 7 of 7 items for

  • Refine by Access: all x
  • By Author: Tuite, Gerald F. x
  • By Author: Limbrick, David D. x
Clear All
Full access

Todd C. Hankinson, Gerald F. Tuite, Dagmara I. Moscoso, Leslie C. Robinson, James C. Torner, David D. Limbrick Jr., Tae Sung Park, and Richard C. E. Anderson

OBJECTIVE

The distance to the ventral dura, perpendicular to the basion to C2 line (pB-C2), is commonly employed as a measure describing the anatomy of the craniovertebral junction. However, both the reliability among observers and the clinical utility of this measurement in the context of Chiari malformation Type I (CM-I) have been incompletely determined.

METHODS

Data were reviewed from the first 600 patients enrolled in the Park-Reeves Syringomyelia Research Consortium with CM-I and syringomyelia. Thirty-one cases were identified in which both CT and MRI studies were available for review. Three pediatric neurosurgeons independently determined pB-C2 values using common imaging sequences: MRI (T1-weighted and T2-weighted with and without the inclusion of retro-odontoid soft tissue) and CT. Values were compared and intraclass correlations were calculated among imaging modalities and observers.

RESULTS

Intraclass correlation of pB-C2 demonstrated strong agreement between observers (intraclass correlation coefficient [ICC] range 0.72–0.76). Measurement using T2-weighted MRI with the inclusion of retro-odontoid soft tissue showed no significant difference with measurement using T1-weighted MRI. Measurements using CT or T2-weighted MRI without retro-odontoid soft tissue differed by 1.6 mm (4.69 and 3.09 mm, respectively, p < 0.05) and were significantly shorter than those using the other 2 sequences.

Conclusions pB-C2 can be measured reliably by multiple observers in the context of pediatric CM-I with syringomeyelia. Measurement using T2-weighted MRI excluding retro-odontoid soft tissue closely approximates the value obtained using CT, which may allow for the less frequent use of CT in this patient population. Measurement using T2-weighted MRI including retro-odontoid soft tissue or using T1-weighted MRI yields a more complete assessment of the extent of ventral brainstem compression, but its association with clinical outcomes requires further study.

Full access

Hannah E. Goldstein, Justin A. Neira, Matei Banu, Philipp R. Aldana, Bruno P. Braga, Douglas L. Brockmeyer, Michael L. DiLuna, Daniel H. Fulkerson, Todd C. Hankinson, Andrew H. Jea, Sean M. Lew, David D. Limbrick, Jonathan Martin, Joshua M. Pahys, Luis F. Rodriguez, Curtis J. Rozzelle, Gerald F. Tuite, Nicholas M. Wetjen, and Richard C. E. Anderson

OBJECTIVE

The long-term effects of surgical fusion on the growing subaxial cervical spine are largely unknown. Recent cross-sectional studies have demonstrated that there is continued growth of the cervical spine through the teenage years. The purpose of this multicenter study was to determine the effects of rigid instrumentation and fusion on the growing subaxial cervical spine by investigating vertical growth, cervical alignment, cervical curvature, and adjacent-segment instability over time.

METHODS

A total of 15 centers participated in this multi-institutional retrospective study. Cases involving children less than 16 years of age who underwent rigid instrumentation and fusion of the subaxial cervical spine (C-2 and T-1 inclusive) with at least 1 year of clinical and radiographic follow-up were investigated. Charts were reviewed for clinical data. Postoperative and most recent radiographs, CT, and MR images were used to measure vertical growth and assess alignment and stability.

RESULTS

Eighty-one patients were included in the study, with a mean follow-up of 33 months. Ninety-five percent of patients had complete clinical resolution or significant improvement in symptoms. Postoperative cervical kyphosis was seen in only 4 patients (5%), and none developed a swan-neck deformity, unintended adjacent-level fusion, or instability. Of patients with at least 2 years of follow-up, 62% demonstrated growth across the fusion construct. On average, vertical growth was 79% (4-level constructs), 83% (3-level constructs), or 100% (2-level constructs) of expected growth. When comparing the group with continued vertical growth to the one without growth, there were no statistically significant differences in terms of age, sex, underlying etiology, surgical approach, or number of levels fused.

CONCLUSIONS

Continued vertical growth of the subaxial spine occurs in nearly two-thirds of children after rigid instrumentation and fusion of the subaxial spine. Failure of continued vertical growth is not associated with the patient’s age, sex, underlying etiology, number of levels fused, or surgical approach. Further studies are needed to understand this dichotomy and determine the long-term biomechanical effects of surgery on the growing pediatric cervical spine.

Restricted access

Jennifer M. Strahle, Rukayat Taiwo, Christine Averill, James Torner, Chevis N. Shannon, Christopher M. Bonfield, Gerald F. Tuite, Tammy Bethel-Anderson, Jerrel Rutlin, Douglas L. Brockmeyer, John C. Wellons III, Jeffrey R. Leonard, Francesco T. Mangano, James M. Johnston, Manish N. Shah, Bermans J. Iskandar, Elizabeth C. Tyler-Kabara, David J. Daniels, Eric M. Jackson, Gerald A. Grant, Daniel E. Couture, P. David Adelson, Tord D. Alden, Philipp R. Aldana, Richard C. E. Anderson, Nathan R. Selden, Lissa C. Baird, Karin Bierbrauer, Joshua J. Chern, William E. Whitehead, Richard G. Ellenbogen, Herbert E. Fuchs, Daniel J. Guillaume, Todd C. Hankinson, Mark R. Iantosca, W. Jerry Oakes, Robert F. Keating, Nickalus R. Khan, Michael S. Muhlbauer, J. Gordon McComb, Arnold H. Menezes, John Ragheb, Jodi L. Smith, Cormac O. Maher, Stephanie Greene, Michael Kelly, Brent R. O’Neill, Mark D. Krieger, Mandeep Tamber, Susan R. Durham, Greg Olavarria, Scellig S. D. Stone, Bruce A. Kaufman, Gregory G. Heuer, David F. Bauer, Gregory Albert, Jeffrey P. Greenfield, Scott D. Wait, Mark D. Van Poppel, Ramin Eskandari, Timothy Mapstone, Joshua S. Shimony, Ralph G. Dacey Jr., Matthew D. Smyth, Tae Sung Park, and David D. Limbrick Jr.

OBJECTIVE

Scoliosis is frequently a presenting sign of Chiari malformation type I (CM-I) with syrinx. The authors’ goal was to define scoliosis in this population and describe how radiological characteristics of CM-I and syrinx relate to the presence and severity of scoliosis.

METHODS

A large multicenter retrospective and prospective registry of pediatric patients with CM-I (tonsils ≥ 5 mm below the foramen magnum) and syrinx (≥ 3 mm in axial width) was reviewed for clinical and radiological characteristics of CM-I, syrinx, and scoliosis (coronal curve ≥ 10°).

RESULTS

Based on available imaging of patients with CM-I and syrinx, 260 of 825 patients (31%) had a clear diagnosis of scoliosis based on radiographs or coronal MRI. Forty-nine patients (5.9%) did not have scoliosis, and in 516 (63%) patients, a clear determination of the presence or absence of scoliosis could not be made. Comparison of patients with and those without a definite scoliosis diagnosis indicated that scoliosis was associated with wider syrinxes (8.7 vs 6.3 mm, OR 1.25, p < 0.001), longer syrinxes (10.3 vs 6.2 levels, OR 1.18, p < 0.001), syrinxes with their rostral extent located in the cervical spine (94% vs 80%, OR 3.91, p = 0.001), and holocord syrinxes (50% vs 16%, OR 5.61, p < 0.001). Multivariable regression analysis revealed syrinx length and the presence of holocord syrinx to be independent predictors of scoliosis in this patient cohort. Scoliosis was not associated with sex, age at CM-I diagnosis, tonsil position, pB–C2 distance (measured perpendicular distance from the ventral dura to a line drawn from the basion to the posterior-inferior aspect of C2), clivoaxial angle, or frontal-occipital horn ratio. Average curve magnitude was 29.9°, and 37.7% of patients had a left thoracic curve. Older age at CM-I or syrinx diagnosis (p < 0.0001) was associated with greater curve magnitude whereas there was no association between syrinx dimensions and curve magnitude.

CONCLUSIONS

Syrinx characteristics, but not tonsil position, were related to the presence of scoliosis in patients with CM-I, and there was an independent association of syrinx length and holocord syrinx with scoliosis. Further study is needed to evaluate the nature of the relationship between syrinx and scoliosis in patients with CM-I.

Free access

Jennifer M. Strahle, Rukayat Taiwo, Christine Averill, James Torner, Jordan I. Gewirtz, Chevis N. Shannon, Christopher M. Bonfield, Gerald F. Tuite, Tammy Bethel-Anderson, Richard C. E. Anderson, Michael P. Kelly, Joshua S. Shimony, Ralph G. Dacey Jr., Matthew D. Smyth, Tae Sung Park, David D. Limbrick Jr., and for the Park-Reeves Syringomyelia Research Consortium

OBJECTIVE

In patients with Chiari malformation type I (CM-I) and a syrinx who also have scoliosis, clinical and radiological predictors of curve regression after posterior fossa decompression are not well known. Prior reports indicate that age younger than 10 years and a curve magnitude < 35° are favorable predictors of curve regression following surgery. The aim of this study was to determine baseline radiological factors, including craniocervical junction alignment, that might predict curve stability or improvement after posterior fossa decompression.

METHODS

A large multicenter retrospective and prospective registry of pediatric patients with CM-I (tonsils ≥ 5 mm below the foramen magnum) and a syrinx (≥ 3 mm in width) was reviewed for clinical and radiological characteristics of CM-I, syrinx, and scoliosis (coronal curve ≥ 10°) in patients who underwent posterior fossa decompression and who also had follow-up imaging.

RESULTS

Of 825 patients with CM-I and a syrinx, 251 (30.4%) were noted to have scoliosis present at the time of diagnosis. Forty-one (16.3%) of these patients underwent posterior fossa decompression and had follow-up imaging to assess for scoliosis. Twenty-three patients (56%) were female, the mean age at time of CM-I decompression was 10.0 years, and the mean follow-up duration was 1.3 years. Nine patients (22%) had stable curves, 16 (39%) showed improvement (> 5°), and 16 (39%) displayed curve progression (> 5°) during the follow-up period. Younger age at the time of decompression was associated with improvement in curve magnitude; for those with curves of ≤ 35°, 17% of patients younger than 10 years of age had curve progression compared with 64% of those 10 years of age or older (p = 0.008). There was no difference by age for those with curves > 35°. Tonsil position, baseline syrinx dimensions, and change in syrinx size were not associated with the change in curve magnitude. There was no difference in progression after surgery in patients who were also treated with a brace compared to those who were not treated with a brace for scoliosis.

CONCLUSIONS

In this cohort of patients with CM-I, a syrinx, and scoliosis, younger age at the time of decompression was associated with improvement in curve magnitude following surgery, especially in patients younger than 10 years of age with curves of ≤ 35°. Baseline tonsil position, syrinx dimensions, frontooccipital horn ratio, and craniocervical junction morphology were not associated with changes in curve magnitude after surgery.

Restricted access

Alexander T. Yahanda, P. David Adelson, S. Hassan A. Akbari, Gregory W. Albert, Philipp R. Aldana, Tord D. Alden, Richard C. E. Anderson, David F. Bauer, Tammy Bethel-Anderson, Douglas L. Brockmeyer, Joshua J. Chern, Daniel E. Couture, David J. Daniels, Brian J. Dlouhy, Susan R. Durham, Richard G. Ellenbogen, Ramin Eskandari, Timothy M. George, Gerald A. Grant, Patrick C. Graupman, Stephanie Greene, Jeffrey P. Greenfield, Naina L. Gross, Daniel J. Guillaume, Todd C. Hankinson, Gregory G. Heuer, Mark Iantosca, Bermans J. Iskandar, Eric M. Jackson, James M. Johnston, Robert F. Keating, Mark D. Krieger, Jeffrey R. Leonard, Cormac O. Maher, Francesco T. Mangano, J. Gordon McComb, Sean D. McEvoy, Thanda Meehan, Arnold H. Menezes, Brent R. O’Neill, Greg Olavarria, John Ragheb, Nathan R. Selden, Manish N. Shah, Chevis N. Shannon, Joshua S. Shimony, Matthew D. Smyth, Scellig S. D. Stone, Jennifer M. Strahle, James C. Torner, Gerald F. Tuite, Scott D. Wait, John C. Wellons III, William E. Whitehead, Tae Sung Park, and David D. Limbrick Jr.

OBJECTIVE

Posterior fossa decompression with duraplasty (PFDD) is commonly performed for Chiari I malformation (CM-I) with syringomyelia (SM). However, complication rates associated with various dural graft types are not well established. The objective of this study was to elucidate complication rates within 6 months of surgery among autograft and commonly used nonautologous grafts for pediatric patients who underwent PFDD for CM-I/SM.

METHODS

The Park-Reeves Syringomyelia Research Consortium database was queried for pediatric patients who had undergone PFDD for CM-I with SM. All patients had tonsillar ectopia ≥ 5 mm, syrinx diameter ≥ 3 mm, and ≥ 6 months of postoperative follow-up after PFDD. Complications (e.g., pseudomeningocele, CSF leak, meningitis, and hydrocephalus) and postoperative changes in syrinx size, headaches, and neck pain were compared for autograft versus nonautologous graft.

RESULTS

A total of 781 PFDD cases were analyzed (359 autograft, 422 nonautologous graft). Nonautologous grafts included bovine pericardium (n = 63), bovine collagen (n = 225), synthetic (n = 99), and human cadaveric allograft (n = 35). Autograft (103/359, 28.7%) had a similar overall complication rate compared to nonautologous graft (143/422, 33.9%) (p = 0.12). However, nonautologous graft was associated with significantly higher rates of pseudomeningocele (p = 0.04) and meningitis (p < 0.001). The higher rate of meningitis was influenced particularly by the higher rate of chemical meningitis (p = 0.002) versus infectious meningitis (p = 0.132). Among 4 types of nonautologous grafts, there were differences in complication rates (p = 0.02), including chemical meningitis (p = 0.01) and postoperative nausea/vomiting (p = 0.03). Allograft demonstrated the lowest complication rates overall (14.3%) and yielded significantly fewer complications compared to bovine collagen (p = 0.02) and synthetic (p = 0.003) grafts. Synthetic graft yielded higher complication rates than autograft (p = 0.01). Autograft and nonautologous graft resulted in equal improvements in syrinx size (p < 0.0001). No differences were found for postoperative changes in headaches or neck pain.

CONCLUSIONS

In the largest multicenter cohort to date, complication rates for dural autograft and nonautologous graft are similar after PFDD for CM-I/SM, although nonautologous graft results in higher rates of pseudomeningocele and meningitis. Rates of meningitis differ among nonautologous graft types. Autograft and nonautologous graft are equivalent for reducing syrinx size, headaches, and neck pain.

Restricted access

Brooke Sadler, Alex Skidmore, Jordan Gewirtz, Richard C. E. Anderson, Gabe Haller, Laurie L. Ackerman, P. David Adelson, Raheel Ahmed, Gregory W. Albert, Philipp R. Aldana, Tord D. Alden, Christine Averill, Lissa C. Baird, David F. Bauer, Tammy Bethel-Anderson, Karin S. Bierbrauer, Christopher M. Bonfield, Douglas L. Brockmeyer, Joshua J. Chern, Daniel E. Couture, David J. Daniels, Brian J. Dlouhy, Susan R. Durham, Richard G. Ellenbogen, Ramin Eskandari, Herbert E. Fuchs, Timothy M. George, Gerald A. Grant, Patrick C. Graupman, Stephanie Greene, Jeffrey P. Greenfield, Naina L. Gross, Daniel J. Guillaume, Todd C. Hankinson, Gregory G. Heuer, Mark Iantosca, Bermans J. Iskandar, Eric M. Jackson, Andrew H. Jea, James M. Johnston, Robert F. Keating, Nickalus Khan, Mark D. Krieger, Jeffrey R. Leonard, Cormac O. Maher, Francesco T. Mangano, Timothy B. Mapstone, J. Gordon McComb, Sean D. McEvoy, Thanda Meehan, Arnold H. Menezes, Michael Muhlbauer, W. Jerry Oakes, Greg Olavarria, Brent R. O’Neill, John Ragheb, Nathan R. Selden, Manish N. Shah, Chevis N. Shannon, Jodi Smith, Matthew D. Smyth, Scellig S. D. Stone, Gerald F. Tuite, Scott D. Wait, John C. Wellons III, William E. Whitehead, Tae Sung Park, David D. Limbrick Jr., and Jennifer M. Strahle

OBJECTIVE

Scoliosis is common in patients with Chiari malformation type I (CM-I)–associated syringomyelia. While it is known that treatment with posterior fossa decompression (PFD) may reduce the progression of scoliosis, it is unknown if decompression with duraplasty is superior to extradural decompression.

METHODS

A large multicenter retrospective and prospective registry of 1257 pediatric patients with CM-I (tonsils ≥ 5 mm below the foramen magnum) and syrinx (≥ 3 mm in axial width) was reviewed for patients with scoliosis who underwent PFD with or without duraplasty.

RESULTS

In total, 422 patients who underwent PFD had a clinical diagnosis of scoliosis. Of these patients, 346 underwent duraplasty, 51 received extradural decompression alone, and 25 were excluded because no data were available on the type of PFD. The mean clinical follow-up was 2.6 years. Overall, there was no difference in subsequent occurrence of fusion or proportion of patients with curve progression between those with and those without a duraplasty. However, after controlling for age, sex, preoperative curve magnitude, syrinx length, syrinx width, and holocord syrinx, extradural decompression was associated with curve progression > 10°, but not increased occurrence of fusion. Older age at PFD and larger preoperative curve magnitude were independently associated with subsequent occurrence of fusion. Greater syrinx reduction after PFD of either type was associated with decreased occurrence of fusion.

CONCLUSIONS

In patients with CM-I, syrinx, and scoliosis undergoing PFD, there was no difference in subsequent occurrence of surgical correction of scoliosis between those receiving a duraplasty and those with an extradural decompression. However, after controlling for preoperative factors including age, syrinx characteristics, and curve magnitude, patients treated with duraplasty were less likely to have curve progression than patients treated with extradural decompression. Further study is needed to evaluate the role of duraplasty in curve stabilization after PFD.

Restricted access

Brooke Sadler, Alex Skidmore, Jordan Gewirtz, Richard C. E. Anderson, Gabe Haller, Laurie L. Ackerman, P. David Adelson, Raheel Ahmed, Gregory W. Albert, Philipp R. Aldana, Tord D. Alden, Christine Averill, Lissa C. Baird, David F. Bauer, Tammy Bethel-Anderson, Karin S. Bierbrauer, Christopher M. Bonfield, Douglas L. Brockmeyer, Joshua J. Chern, Daniel E. Couture, David J. Daniels, Brian J. Dlouhy, Susan R. Durham, Richard G. Ellenbogen, Ramin Eskandari, Herbert E. Fuchs, Timothy M. George, Gerald A. Grant, Patrick C. Graupman, Stephanie Greene, Jeffrey P. Greenfield, Naina L. Gross, Daniel J. Guillaume, Todd C. Hankinson, Gregory G. Heuer, Mark Iantosca, Bermans J. Iskandar, Eric M. Jackson, Andrew H. Jea, James M. Johnston, Robert F. Keating, Nickalus Khan, Mark D. Krieger, Jeffrey R. Leonard, Cormac O. Maher, Francesco T. Mangano, Timothy B. Mapstone, J. Gordon McComb, Sean D. McEvoy, Thanda Meehan, Arnold H. Menezes, Michael Muhlbauer, W. Jerry Oakes, Greg Olavarria, Brent R. O’Neill, John Ragheb, Nathan R. Selden, Manish N. Shah, Chevis N. Shannon, Jodi Smith, Matthew D. Smyth, Scellig S. D. Stone, Gerald F. Tuite, Scott D. Wait, John C. Wellons III, William E. Whitehead, Tae Sung Park, David D. Limbrick Jr., and Jennifer M. Strahle

OBJECTIVE

Scoliosis is common in patients with Chiari malformation type I (CM-I)–associated syringomyelia. While it is known that treatment with posterior fossa decompression (PFD) may reduce the progression of scoliosis, it is unknown if decompression with duraplasty is superior to extradural decompression.

METHODS

A large multicenter retrospective and prospective registry of 1257 pediatric patients with CM-I (tonsils ≥ 5 mm below the foramen magnum) and syrinx (≥ 3 mm in axial width) was reviewed for patients with scoliosis who underwent PFD with or without duraplasty.

RESULTS

In total, 422 patients who underwent PFD had a clinical diagnosis of scoliosis. Of these patients, 346 underwent duraplasty, 51 received extradural decompression alone, and 25 were excluded because no data were available on the type of PFD. The mean clinical follow-up was 2.6 years. Overall, there was no difference in subsequent occurrence of fusion or proportion of patients with curve progression between those with and those without a duraplasty. However, after controlling for age, sex, preoperative curve magnitude, syrinx length, syrinx width, and holocord syrinx, extradural decompression was associated with curve progression > 10°, but not increased occurrence of fusion. Older age at PFD and larger preoperative curve magnitude were independently associated with subsequent occurrence of fusion. Greater syrinx reduction after PFD of either type was associated with decreased occurrence of fusion.

CONCLUSIONS

In patients with CM-I, syrinx, and scoliosis undergoing PFD, there was no difference in subsequent occurrence of surgical correction of scoliosis between those receiving a duraplasty and those with an extradural decompression. However, after controlling for preoperative factors including age, syrinx characteristics, and curve magnitude, patients treated with duraplasty were less likely to have curve progression than patients treated with extradural decompression. Further study is needed to evaluate the role of duraplasty in curve stabilization after PFD.