Browse

You are looking at 1 - 10 of 102 items for

  • Refine by Access: all x
  • By Author: Starke, Robert M. x
Clear All
Restricted access

Isaac Josh Abecassis, R. Michael Meyer, Michael R. Levitt, Jason P. Sheehan, Ching-Jen Chen, Bradley A. Gross, Ashley Lockerman, W. Christopher Fox, Waleed Brinjikji, Giuseppe Lanzino, Robert M. Starke, Stephanie H. Chen, Adriaan R. E. Potgieser, J. Marc C. van Dijk, Andrew Durnford, Diederik Bulters, Junichiro Satomi, Yoshiteru Tada, Amanda Kwasnicki, Sepideh Amin-Hanjani, Ali Alaraj, Edgar A. Samaniego, Minako Hayakawa, Colin P. Derdeyn, Ethan Winkler, Adib Abla, Pui Man Rosalind Lai, Rose Du, Ridhima Guniganti, Akash P. Kansagra, Gregory J. Zipfel, and Louis J. Kim

OBJECTIVE

There is a reported elevated risk of cerebral aneurysms in patients with intracranial dural arteriovenous fistulas (dAVFs). However, the natural history, rate of spontaneous regression, and ideal treatment regimen are not well characterized. In this study, the authors aimed to describe the characteristics of patients with dAVFs and intracranial aneurysms and propose a classification system.

METHODS

The Consortium for Dural Arteriovenous Fistula Outcomes Research (CONDOR) database from 12 centers was retrospectively reviewed. Analysis was performed to compare dAVF patients with (dAVF+ cohort) and without (dAVF-only cohort) concomitant aneurysm. Aneurysms were categorized based on location as a dAVF flow-related aneurysm (FRA) or a dAVF non–flow-related aneurysm (NFRA), with further classification as extra- or intradural. Patients with traumatic pseudoaneurysms or aneurysms with associated arteriovenous malformations were excluded from the analysis. Patient demographics, dAVF anatomical information, aneurysm information, and follow-up data were collected.

RESULTS

Of the 1077 patients, 1043 were eligible for inclusion, comprising 978 (93.8%) and 65 (6.2%) in the dAVF-only and dAVF+ cohorts, respectively. There were 96 aneurysms in the dAVF+ cohort; 10 patients (1%) harbored 12 FRAs, and 55 patients (5.3%) harbored 84 NFRAs. Dural AVF+ patients had higher rates of smoking (59.3% vs 35.2%, p < 0.001) and illicit drug use (5.8% vs 1.5%, p = 0.02). Sixteen dAVF+ patients (24.6%) presented with aneurysm rupture, which represented 16.7% of the total aneurysms. One patient (1.5%) had aneurysm rupture during follow-up. Patients with dAVF+ were more likely to have a dAVF located in nonconventional locations, less likely to have arterial supply to the dAVF from external carotid artery branches, and more likely to have supply from pial branches. Rates of cortical venous drainage and Borden type distributions were comparable between cohorts. A minority (12.5%) of aneurysms were FRAs. The majority of the aneurysms underwent treatment via either endovascular (36.5%) or microsurgical (15.6%) technique. A small proportion of aneurysms managed conservatively either with or without dAVF treatment spontaneously regressed (6.2%).

CONCLUSIONS

Patients with dAVF have a similar risk of harboring a concomitant intracranial aneurysm unrelated to the dAVF (5.3%) compared with the general population (approximately 2%–5%) and a rare risk (0.9%) of harboring an FRA. Only 50% of FRAs are intradural. Dural AVF+ patients have differences in dAVF angioarchitecture. A subset of dAVF+ patients harbor FRAs that may regress after dAVF treatment.

Restricted access

Ridhima Guniganti, Enrico Giordan, Ching-Jen Chen, Isaac Josh Abecassis, Michael R. Levitt, Andrew Durnford, Jessica Smith, Edgar A. Samaniego, Colin P. Derdeyn, Amanda Kwasnicki, Ali Alaraj, Adriaan R. E. Potgieser, Samir Sur, Stephanie H. Chen, Yoshiteru Tada, Ethan Winkler, Ryan R. L. Phelps, Pui Man Rosalind Lai, Rose Du, Adib Abla, Junichiro Satomi, Robert M. Starke, J. Marc C. van Dijk, Sepideh Amin-Hanjani, Minako Hayakawa, Bradley A. Gross, W. Christopher Fox, Diederik Bulters, Louis J. Kim, Jason Sheehan, Giuseppe Lanzino, Jay F. Piccirillo, Akash P. Kansagra, and Gregory J. Zipfel

OBJECTIVE

Cranial dural arteriovenous fistulas (dAVFs) are rare lesions, hampering efforts to understand them and improve their care. To address this challenge, investigators with an established record of dAVF investigation formed an international, multicenter consortium aimed at better elucidating dAVF pathophysiology, imaging characteristics, natural history, and patient outcomes. This report describes the design of the Consortium for Dural Arteriovenous Fistula Outcomes Research (CONDOR) and includes characterization of the 1077-patient cohort.

METHODS

Potential collaborators with established interest in the field were identified via systematic review of the literature. To ensure uniformity of data collection, a quality control process was instituted. Data were retrospectively obtained.

RESULTS

CONDOR comprises 14 centers in the United States, the United Kingdom, the Netherlands, and Japan that have pooled their data from 1077 dAVF patients seen between 1990 and 2017. The cohort includes 359 patients (33%) with Borden type I dAVFs, 175 (16%) with Borden type II fistulas, and 529 (49%) with Borden type III fistulas. Overall, 852 patients (79%) presented with fistula-related symptoms: 427 (40%) presented with nonaggressive symptoms such as tinnitus or orbital phenomena, 258 (24%) presented with intracranial hemorrhage, and 167 (16%) presented with nonhemorrhagic neurological deficits. A smaller proportion (224 patients, 21%), whose dAVFs were discovered incidentally, were asymptomatic. Many patients (85%, 911/1077) underwent treatment via endovascular embolization (55%, 587/1077), surgery (10%, 103/1077), radiosurgery (3%, 36/1077), or multimodal therapy (17%, 184/1077). The overall angiographic cure rate was 83% (758/911 treated), and treatment-related permanent neurological morbidity was 2% (27/1467 total procedures). The median time from diagnosis to follow-up was 380 days (IQR 120–1038.5 days).

CONCLUSIONS

With more than 1000 patients, the CONDOR registry represents the largest registry of cranial dAVF patient data in the world. These unique, well-annotated data will enable multiple future analyses to be performed to better understand dAVFs and their management.

Restricted access

Edgar A. Samaniego, Jorge A. Roa, Minako Hayakawa, Ching-Jen Chen, Jason P. Sheehan, Louis J. Kim, Isaac Josh Abecassis, Michael R. Levitt, Ridhima Guniganti, Akash P. Kansagra, Giuseppe Lanzino, Enrico Giordan, Waleed Brinjikji, Diederik Bulters, Andrew Durnford, W. Christopher Fox, Adam J. Polifka, Bradley A. Gross, Sepideh Amin-Hanjani, Ali Alaraj, Amanda Kwasnicki, Robert M. Starke, Samir Sur, J. Marc C. van Dijk, Adriaan R. E. Potgieser, Junichiro Satomi, Yoshiteru Tada, Adib Abla, Ethan Winkler, Rose Du, Pui Man Rosalind Lai, Gregory J. Zipfel, and Colin P. Derdeyn

OBJECTIVE

Current evidence suggests that intracranial dural arteriovenous fistulas (dAVFs) without cortical venous drainage (CVD) have a benign clinical course. However, no large study has evaluated the safety and efficacy of current treatments and their impact over the natural history of dAVFs without CVD.

METHODS

The authors conducted an analysis of the retrospectively collected multicenter Consortium for Dural Arteriovenous Fistula Outcomes Research (CONDOR) database. Patient demographics and presenting symptoms, angiographic features of the dAVFs, and treatment outcomes of patients with Borden type I dAVFs were reviewed. Clinical and radiological follow-up information was assessed to determine rates of new intracranial hemorrhage (ICH) or nonhemorrhagic neurological deficit (NHND), worsening of venous hyperdynamic symptoms (VHSs), angiographic recurrence, and progression or spontaneous regression of dAVFs over time.

RESULTS

A total of 342 patients/Borden type I dAVFs were identified. The mean patient age was 58.1 ± 15.6 years, and 62% were women. The mean follow-up time was 37.7 ± 54.3 months. Of 230 (67.3%) treated dAVFs, 178 (77%) underwent mainly endovascular embolization, 11 (4.7%) radiosurgery alone, and 4 (1.7%) open surgery as the primary modality. After the first embolization, most dAVFs (47.2%) achieved only partial reduction in early venous filling. Multiple complementary interventions increased complete obliteration rates from 37.9% after first embolization to 46.7% after two or more embolizations, and 55.2% after combined radiosurgery and open surgery. Immediate postprocedural complications occurred in 35 dAVFs (15.2%) and 6 (2.6%) with permanent sequelae. Of 127 completely obliterated dAVFs by any therapeutic modality, 2 (1.6%) showed angiographic recurrence/recanalization at a mean of 34.2 months after treatment. Progression to Borden-Shucart type II or III was documented in 2.2% of patients and subsequent development of a new dAVF in 1.6%. Partial spontaneous regression was found in 22 (21.4%) of 103 nontreated dAVFs. Multivariate Cox regression analysis demonstrated that older age, NHND, or severe venous-hyperdynamic symptoms at presentation and infratentorial location were associated with worse prognosis. Kaplan-Meier curves showed no significant difference for stable/improved symptoms survival probability in treated versus nontreated dAVFs. However, estimated survival times showed better trends for treated dAVFs compared with nontreated dAVFs (288.1 months vs 151.1 months, log-rank p = 0.28). This difference was statistically significant for treated dAVFs with 100% occlusion (394 months, log-rank p < 0.001).

CONCLUSIONS

Current therapeutic modalities for management of dAVFs without CVD may provide better symptom control when complete angiographic occlusion is achieved.

Restricted access

Ching-Jen Chen, Thomas J. Buell, Dale Ding, Ridhima Guniganti, Akash P. Kansagra, Giuseppe Lanzino, Enrico Giordan, Louis J. Kim, Michael R. Levitt, Isaac Josh Abecassis, Diederik Bulters, Andrew Durnford, W. Christopher Fox, Adam J. Polifka, Bradley A. Gross, Minako Hayakawa, Colin P. Derdeyn, Edgar A. Samaniego, Sepideh Amin-Hanjani, Ali Alaraj, Amanda Kwasnicki, J. Marc C. van Dijk, Adriaan R. E. Potgieser, Robert M. Starke, Samir Sur, Junichiro Satomi, Yoshiteru Tada, Adib A. Abla, Ethan A. Winkler, Rose Du, Pui Man Rosalind Lai, Gregory J. Zipfel, and Jason P. Sheehan

OBJECTIVE

The risk-to-benefit profile of treating an unruptured high-grade dural arteriovenous fistula (dAVF) is not clearly defined. The aim of this multicenter retrospective cohort study was to compare the outcomes of different interventions with observation for unruptured high-grade dAVFs.

METHODS

The authors retrospectively reviewed dAVF patients from 12 institutions participating in the Consortium for Dural Arteriovenous Fistula Outcomes Research (CONDOR). Patients with unruptured high-grade (Borden type II or III) dAVFs were included and categorized into four groups (observation, embolization, surgery, and stereotactic radiosurgery [SRS]) based on the initial management. The primary outcome was defined as the modified Rankin Scale (mRS) score at final follow-up. Secondary outcomes were good outcome (mRS scores 0–2) at final follow-up, symptomatic improvement, all-cause mortality, and dAVF obliteration. The outcomes of each intervention group were compared against those of the observation group as a reference, with adjustment for differences in baseline characteristics.

RESULTS

The study included 415 dAVF patients, accounting for 29, 324, 43, and 19 in the observation, embolization, surgery, and SRS groups, respectively. The mean radiological and clinical follow-up durations were 21 and 25 months, respectively. Functional outcomes were similar for embolization, surgery, and SRS compared with observation. With observation as a reference, obliteration rates were higher after embolization (adjusted OR [aOR] 7.147, p = 0.010) and surgery (aOR 33.803, p < 0.001) and all-cause mortality was lower after embolization (imputed, aOR 0.171, p = 0.040). Hemorrhage rates per 1000 patient-years were 101 for observation versus 9, 22, and 0 for embolization (p = 0.022), surgery (p = 0.245), and SRS (p = 0.077), respectively. Nonhemorrhagic neurological deficit rates were similar between each intervention group versus observation.

CONCLUSIONS

Embolization and surgery for unruptured high-grade dAVFs afforded a greater likelihood of obliteration than did observation. Embolization also reduced the risk of death and dAVF-associated hemorrhage compared with conservative management over a modest follow-up period. These findings support embolization as the first-line treatment of choice for appropriately selected unruptured Borden type II and III dAVFs.

Restricted access

Isaac Josh Abecassis, R. Michael Meyer, Michael R. Levitt, Jason P. Sheehan, Ching-Jen Chen, Bradley A. Gross, Jessica Smith, W. Christopher Fox, Enrico Giordan, Giuseppe Lanzino, Robert M. Starke, Samir Sur, Adriaan R. E. Potgieser, J. Marc C. van Dijk, Andrew Durnford, Diederik Bulters, Junichiro Satomi, Yoshiteru Tada, Amanda Kwasnicki, Sepideh Amin-Hanjani, Ali Alaraj, Edgar A. Samaniego, Minako Hayakawa, Colin P. Derdeyn, Ethan Winkler, Adib Abla, Pui Man Rosalind Lai, Rose Du, Ridhima Guniganti, Akash P. Kansagra, Gregory J. Zipfel, and Louis J. Kim

OBJECTIVE

Cranial dural arteriovenous fistulas (dAVFs) are often treated with endovascular therapy, but occasionally a multimodality approach including surgery and/or radiosurgery is utilized. Recurrence after an initial angiographic cure has been reported, with estimated rates ranging from 2% to 14.3%, but few risk factors have been identified. The objective of this study was to identify risk factors associated with recurrence of dAVF after putative cure.

METHODS

The Consortium for Dural Arteriovenous Fistula Outcomes Research (CONDOR) data were retrospectively reviewed. All patients with angiographic cure after treatment and subsequent angiographic follow-up were included. The primary outcome was recurrence, with risk factor analysis. Secondary outcomes included clinical outcomes, morbidity, and mortality associated with recurrence. Risk factor analysis was performed comparing the group of patients who experienced recurrence with those with durable cure (regardless of multiple recurrences). Time-to-event analysis was performed using all collective recurrence events (multiple per patients in some cases).

RESULTS

Of the 1077 patients included in the primary CONDOR data set, 457 met inclusion criteria. A total of 32 patients (7%) experienced 34 events of recurrence at a mean of 368.7 days (median 192 days). The recurrence rate was 4.5% overall. Kaplan-Meier analysis predicted long-term recurrence rates approaching 11% at 3 years. Grade III dAVFs treated with endovascular therapy were statistically significantly more likely to experience recurrence than those treated surgically (13.3% vs 0%, p = 0.0001). Tentorial location, cortical venous drainage, and deep cerebral venous drainage were all risk factors for recurrence. Endovascular intervention and radiosurgery were associated with recurrence. Six recurrences were symptomatic, including 2 with hemorrhage, 3 with nonhemorrhagic neurological deficit, and 1 with progressive flow-related symptoms (decreased vision).

CONCLUSIONS

Recurrence of dAVFs after putative cure can occur after endovascular treatment. Risk factors include tentorial location, cortical venous drainage, and deep cerebral drainage. Multimodality therapy can be used to achieve cure after recurrence. A delayed long-term angiographic evaluation (at least 1 year from cure) may be warranted, especially in cases with risk factors for recurrence.

Open access

Gregory W. Basil, Annelise C. Sprau, Robert M. Starke, Allan D. Levi, and Michael Y. Wang

BACKGROUND

The percutaneous, endoscope-assisted anterior cervical discectomy is a relatively new procedure, and because of its novelty, complications are minimal and pertinent literature is scarce. This approach relies on a sufficient anatomical understanding of the vital neurovascular structures in the operating workspace. Although complications are rare, they can be significant.

OBSERVATIONS

The patient presented with difficulty breathing following an anterior percutaneous cervical discectomy performed at an outpatient surgical center. Imaging revealed a prevertebral hematoma and multiple carotid pseudoaneurysms. Given the large prevertebral hematoma and concern for imminent airway collapse, the authors proceeded with emergent intubation and surgical evacuation of the clot.

LESSONS

The authors propose managing complications in a fashion similar to those for comparable injuries after classic anterior approaches. Definitive management of our patient’s carotid injury would require stenting and, therefore, dual antiplatelet agents. Thus, the authors proceeded with the hematoma evacuation first. Additionally, careful dissection was needed to decrease further carotid damage. Thus, the authors made a more rostral incision to maintain the given stability of the carotid insult before the angiographic intervention to follow. It is the authors’ hope that the technical pearls from this two-staged open hematoma evacuation and endovascular stenting may guide future presurgical and intraoperative planning and management of complications, should they arise.

Free access

Rebecca M. Burke, Ching-Jen Chen, Dale Ding, Thomas J. Buell, Jennifer D. Sokolowski, Cheng-Chia Lee, Hideyuki Kano, Kathryn N. Kearns, Shih-Wei Tzeng, Huai-che Yang, Paul P. Huang, Douglas Kondziolka, Natasha Ironside, David Mathieu, Christian Iorio-Morin, Inga S. Grills, Caleb Feliciano, Gene H. Barnett, Robert M. Starke, L. Dade Lunsford, and Jason P. Sheehan

OBJECTIVE

Stereotactic radiosurgery (SRS) is a treatment option for pediatric brain arteriovenous malformations (AVMs), and early obliteration could encourage SRS utilization for a subset of particularly radiosensitive lesions. The objective of this study was to determine predictors of early obliteration after SRS for pediatric AVMs.

METHODS

The authors performed a retrospective review of the International Radiosurgery Research Foundation AVM database. Obliterated pediatric AVMs were sorted into early (obliteration ≤ 24 months after SRS) and late (obliteration > 24 months after SRS) responders. Predictors of early obliteration were identified, and the outcomes of each group were compared.

RESULTS

The overall study cohort was composed of 345 pediatric patients with obliterated AVMs. The early and late obliteration cohorts were made up of 95 (28%) and 250 (72%) patients, respectively. Independent predictors of early obliteration were female sex, a single SRS treatment, a higher margin dose, a higher isodose line, a deep AVM location, and a smaller AVM volume. The crude rate of post-SRS hemorrhage was 50% lower in the early (3.2%) than in the late (6.4%) obliteration cohorts, but this difference was not statistically significant (p = 0.248). The other outcomes of the early versus late obliteration cohorts were similar, with respect to symptomatic radiation-induced changes (RICs), cyst formation, and tumor formation.

CONCLUSIONS

Approximately one-quarter of pediatric AVMs that become obliterated after SRS will achieve this radiological endpoint within 24 months of initial SRS. The authors identified multiple factors associated with early obliteration, which may aid in prognostication and management. The overall risks of delayed hemorrhage, RICs, cyst formation, and tumor formation were not statistically different in patients with early versus late obliteration.

Free access

Jorge A. Roa, Mario Zanaty, Daizo Ishii, Yongjun Lu, David K. Kung, Robert M. Starke, James C. Torner, Pascal M. Jabbour, Edgar A. Samaniego, and David M. Hasan

OBJECTIVE

Inflammation plays an integral role in the formation, growth, and progression to rupture of unruptured intracranial aneurysms (UIAs). Animal and human studies have suggested that, due to its antiinflammatory effect, aspirin (ASA) may decrease the risks of growth and rupture of UIAs. High-resolution vessel wall imaging (HR-VWI) has emerged as a noninvasive method to assess vessel wall inflammation and UIA instability. To the authors’ knowledge, to date no studies have found a significant correlation between patient use of ASA and contrast enhancement of UIAs on HR-VWI.

METHODS

The University of Iowa HR-VWI Project database was analyzed. This database is a compilation of data on patients with UIAs who prospectively underwent HR-VWI on a 3T Siemens MRI scanner. The presence of aneurysmal wall enhancement was objectively defined using the aneurysm-to–pituitary stalk contrast ratio (CRstalk). This ratio was calculated by measuring the maximal signal intensity in the aneurysmal wall and the pituitary stalk on postcontrast T1-weighted images. Data on aneurysm size, morphology, and location and patient demographics and comorbidities were collected. Use of ASA was defined as daily intake of ≥ 81 mg during the previous 6 months or longer. Univariate and multivariate logistic regression analyses were performed to determine factors independently associated with increased contrast enhancement of UIAs on HR-VWI.

RESULTS

In total, 74 patients harboring 96 UIAs were included in the study. The mean patient age was 64.7 ± 12.4 years, and 60 patients (81%) were women. Multivariate analysis showed that age (OR 1.12, 95% CI 1.05–1.19), aneurysm size ≥ 7 mm (OR 21.3, 95% CI 4.88–92.8), and location in the anterior communicating, posterior communicating, and basilar arteries (OR 10.7, 95% CI 2.45–46.5) were significantly associated with increased wall enhancement on HR-VWI. On the other hand, use of ASA was significantly associated with decreased aneurysmal wall enhancement on HR-VWI (OR 0.22, 95% CI 0.06–0.83, p = 0.026).

CONCLUSIONS

The study results establish a correlation between use of ASA daily for ≥ 6 months and significant decreases in wall enhancement of UIAs on HR-VWI. The findings also demonstrate that detection of wall enhancement using HR-MRI may be a valuable noninvasive method for assessing aneurysmal wall inflammation and UIA instability.

Free access

Jorge A. Roa, Mario Zanaty, Daizo Ishii, Yongjun Lu, David K. Kung, Robert M. Starke, James C. Torner, Pascal M. Jabbour, Edgar A. Samaniego, and David M. Hasan

OBJECTIVE

Inflammation plays an integral role in the formation, growth, and progression to rupture of unruptured intracranial aneurysms (UIAs). Animal and human studies have suggested that, due to its antiinflammatory effect, aspirin (ASA) may decrease the risks of growth and rupture of UIAs. High-resolution vessel wall imaging (HR-VWI) has emerged as a noninvasive method to assess vessel wall inflammation and UIA instability. To the authors’ knowledge, to date no studies have found a significant correlation between patient use of ASA and contrast enhancement of UIAs on HR-VWI.

METHODS

The University of Iowa HR-VWI Project database was analyzed. This database is a compilation of data on patients with UIAs who prospectively underwent HR-VWI on a 3T Siemens MRI scanner. The presence of aneurysmal wall enhancement was objectively defined using the aneurysm-to–pituitary stalk contrast ratio (CRstalk). This ratio was calculated by measuring the maximal signal intensity in the aneurysmal wall and the pituitary stalk on postcontrast T1-weighted images. Data on aneurysm size, morphology, and location and patient demographics and comorbidities were collected. Use of ASA was defined as daily intake of ≥ 81 mg during the previous 6 months or longer. Univariate and multivariate logistic regression analyses were performed to determine factors independently associated with increased contrast enhancement of UIAs on HR-VWI.

RESULTS

In total, 74 patients harboring 96 UIAs were included in the study. The mean patient age was 64.7 ± 12.4 years, and 60 patients (81%) were women. Multivariate analysis showed that age (OR 1.12, 95% CI 1.05–1.19), aneurysm size ≥ 7 mm (OR 21.3, 95% CI 4.88–92.8), and location in the anterior communicating, posterior communicating, and basilar arteries (OR 10.7, 95% CI 2.45–46.5) were significantly associated with increased wall enhancement on HR-VWI. On the other hand, use of ASA was significantly associated with decreased aneurysmal wall enhancement on HR-VWI (OR 0.22, 95% CI 0.06–0.83, p = 0.026).

CONCLUSIONS

The study results establish a correlation between use of ASA daily for ≥ 6 months and significant decreases in wall enhancement of UIAs on HR-VWI. The findings also demonstrate that detection of wall enhancement using HR-MRI may be a valuable noninvasive method for assessing aneurysmal wall inflammation and UIA instability.

Free access

Dallas L. Sheinberg, David J. McCarthy, Omar Elwardany, Jean-Paul Bryant, Evan Luther, Stephanie H. Chen, John W. Thompson, and Robert M. Starke

Endothelial cell (EC) dysfunction is known to contribute to cerebral aneurysm (CA) pathogenesis. Evidence shows that damage or injury to the EC layer is the first event in CA formation. The mechanisms behind EC dysfunction in CA disease are interrelated and include hemodynamic stress, hazardous nitric oxide synthase (NOS) activity, oxidative stress, estrogen imbalance, and endothelial cell-to-cell junction compromise. Abnormal variations in hemodynamic stress incite pathological EC transformation and inflammatory zone formation, ultimately leading to destruction of the vascular wall and aneurysm dilation. Hemodynamic stress activates key molecular pathways that result in the upregulation of chemotactic cytokines and adhesion molecules, leading to inflammatory cell recruitment and infiltration. Concurrently, oxidative stress damages EC-to-EC junction proteins, resulting in interendothelial gap formation. This further promotes leukocyte traffic into the vessel wall and the release of matrix metalloproteinases, which propagates vascular remodeling and breakdown. Abnormal hemodynamic stress and inflammation also trigger adverse changes in NOS activity, altering proper EC mediation of vascular tone and the local inflammatory environment. Additionally, the vasoprotective hormone estrogen modulates gene expression that often suppresses these harmful processes. Crosstalk between these sophisticated pathways contributes to CA initiation, progression, and rupture. This review aims to outline the complex mechanisms of EC dysfunction in CA pathogenesis.