Browse

You are looking at 1 - 10 of 10 items for

  • Refine by Access: all x
  • By Author: Rozzelle, Curtis J. x
  • By Author: Limbrick, David D. x
Clear All
Free access

Abhaya V. Kulkarni, Jay Riva-Cambrin, Samuel R. Browd, James M. Drake, Richard Holubkov, John R. W. Kestle, David D. Limbrick, Curtis J. Rozzelle, Tamara D. Simon, Mandeep S. Tamber, John C. Wellons III, and William E. Whitehead

Object

The use of endoscopic third ventriculostomy (ETV) with choroid plexus cauterization (CPC) has been advocated as an alternative to CSF shunting in infants with hydrocephalus. There are limited reports of this procedure in the North American population, however. The authors provide a retrospective review of the experience with combined ETV + CPC within the North American Hydrocephalus Clinical Research Network (HCRN).

Methods

All children (< 2 years old) who underwent an ETV + CPC at one of 7 HCRN centers before November 2012 were included. Data were collected retrospectively through review of hospital records and the HCRN registry. Comparisons were made to a contemporaneous cohort of 758 children who received their first shunt at < 2 years of age within the HCRN.

Results

Thirty-six patients with ETV + CPC were included (13 with previous shunt). The etiologies of hydrocephalus were as follows: intraventricular hemorrhage of prematurity (9 patients), aqueductal stenosis (8), myelomeningocele (4), and other (15). There were no major intraoperative or early postoperative complications. There were 2 postoperative CSF infections. There were 2 deaths unrelated to hydrocephalus and 1 death from seizure. In 18 patients ETV + CPC failed at a median time of 30 days after surgery (range 4–484 days). The actuarial 3-, 6-, and 12-month success for ETV + CPC was 58%, 52%, and 52%. Time to treatment failure was slightly worse for the 36 patients with ETV + CPC compared with the 758 infants treated with shunts (p = 0.012). Near-complete CPC (≥ 90%) was achieved in 11 cases (31%) overall, but in 50% (10 of 20 cases) in 2012 versus 6% (1 of 16 cases) before 2012 (p = 0.009). Failure was higher in children with < 90% CPC (HR 4.39, 95% CI 0.999–19.2, p = 0.0501).

Conclusions

The early North American multicenter experience with ETV + CPC in infants demonstrates that the procedure has reasonable safety in selected cases. The degree of CPC achieved might be associated with a surgeon's learning curve and appears to affect success, suggesting that surgeon training might improve results.

Free access

Abhaya V. Kulkarni, Jay Riva-Cambrin, Richard Holubkov, Samuel R. Browd, D. Douglas Cochrane, James M. Drake, David D. Limbrick, Curtis J. Rozzelle, Tamara D. Simon, Mandeep S. Tamber, John C. Wellons III, William E. Whitehead, John R. W. Kestle, and for the Hydrocephalus Clinical Research Network

OBJECTIVE

Endoscopic third ventriculostomy (ETV) is now established as a viable treatment option for a subgroup of children with hydrocephalus. Here, the authors report prospective, multicenter results from the Hydrocephalus Clinical Research Network (HCRN) to provide the most accurate determination of morbidity, complication incidence, and efficacy of ETV in children and to determine if intraoperative predictors of ETV success add substantially to preoperative predictors.

METHODS

All children undergoing a first ETV (without choroid plexus cauterization) at 1 of 7 HCRN centers up to June 2013 were included in the study and followed up for a minimum of 18 months. Data, including detailed intraoperative data, were prospectively collected as part of the HCRN's Core Data Project and included details of patient characteristics, ETV failure (need for repeat hydrocephalus surgery), and, in a subset of patients, postoperative complications up to the time of discharge.

RESULTS

Three hundred thirty-six eligible children underwent initial ETV, 18.8% of whom had undergone shunt placement prior to the ETV. The median age at ETV was 6.9 years (IQR 1.7–12.6), with 15.2% of the study cohort younger than 12 months of age. The most common etiologies were aqueductal stenosis (24.8%) and midbrain or tectal lesions (21.2%). Visible forniceal injury (16.6%) was more common than previously reported, whereas severe bleeding (1.8%), thalamic contusion (1.8%), venous injury (1.5%), hypothalamic contusion (1.5%), and major arterial injury (0.3%) were rare. The most common postoperative complications were CSF leak (4.4%), hyponatremia (3.9%), and pseudomeningocele (3.9%). New neurological deficit occurred in 1.5% cases, with 0.5% being permanent.

One hundred forty-one patients had documented failure of their ETV requiring repeat hydrocephalus surgery during follow-up, 117 of them during the first 6 months postprocedure. Kaplan-Meier rates of 30-day, 90-day, 6-month, 1-year, and 2-year failure-free survival were 73.7%, 66.7%, 64.8%, 61.7%, and 57.8%, respectively. According to multivariate modeling, the preoperative ETV Success Score (ETVSS) was associated with ETV success (p < 0.001), as was the intraoperative ability to visualize a “naked” basilar artery (p = 0.023).

CONCLUSIONS

The authors' documented experience represents the most detailed account of ETV results in North America and provides the most accurate picture to date of ETV success and complications, based on contemporaneously collected prospective data. Serious complications with ETV are low. In addition to the ETVSS, visualization of a naked basilar artery is predictive of ETV success.

Free access

William E. Whitehead, Jay Riva-Cambrin, Abhaya V. Kulkarni, John C. Wellons III, Curtis J. Rozzelle, Mandeep S. Tamber, David D. Limbrick Jr., Samuel R. Browd, Robert P. Naftel, Chevis N. Shannon, Tamara D. Simon, Richard Holubkov, Anna Illner, D. Douglas Cochrane, James M. Drake, Thomas G. Luerssen, W. Jerry Oakes, and John R. W. Kestle

OBJECTIVE

Accurate placement of ventricular catheters may result in prolonged shunt survival, but the best target for the hole-bearing segment of the catheter has not been rigorously defined. The goal of the study was to define a target within the ventricle with the lowest risk of shunt failure.

METHODS

Five catheter placement variables (ventricular catheter tip location, ventricular catheter tip environment, relationship to choroid plexus, catheter tip holes within ventricle, and crosses midline) were defined, assessed for interobserver agreement, and evaluated for their effect on shunt survival in univariate and multivariate analyses. De-identified subjects from the Shunt Design Trial, the Endoscopic Shunt Insertion Trial, and a Hydrocephalus Clinical Research Network study on ultrasound-guided catheter placement were combined (n = 858 subjects, all first-time shunt insertions, all patients < 18 years old). The first postoperative brain imaging study was used to determine ventricular catheter placement for each of the catheter placement variables.

RESULTS

Ventricular catheter tip location, environment, catheter tip holes within the ventricle, and crosses midline all achieved sufficient interobserver agreement (κ > 0.60). In the univariate survival analysis, however, only ventricular catheter tip location was useful in distinguishing a target within the ventricle with a survival advantage (frontal horn; log-rank, p = 0.0015). None of the other catheter placement variables yielded a significant survival advantage unless they were compared with catheter tips completely not in the ventricle. Cox regression analysis was performed, examining ventricular catheter tip location with age, etiology, surgeon, decade of surgery, and catheter entry site (anterior vs posterior). Only age (p < 0.001) and entry site (p = 0.005) were associated with shunt survival; ventricular catheter tip location was not (p = 0.37). Anterior entry site lowered the risk of shunt failure compared with posterior entry site by approximately one-third (HR 0.65, 95% CI 0.51–0.83).

CONCLUSIONS

This analysis failed to identify an ideal target within the ventricle for the ventricular catheter tip. Unexpectedly, the choice of an anterior versus posterior catheter entry site was more important in determining shunt survival than the location of the ventricular catheter tip within the ventricle. Entry site may represent a modifiable risk factor for shunt failure, but, due to inherent limitations in study design and previous clinical research on entry site, a randomized controlled trial is necessary before treatment recommendations can be made.

Free access

Abhaya V. Kulkarni, Jay Riva-Cambrin, Curtis J. Rozzelle, Robert P. Naftel, Jessica S. Alvey, Ron W. Reeder, Richard Holubkov, Samuel R. Browd, D. Douglas Cochrane, David D. Limbrick Jr., Tamara D. Simon, Mandeep Tamber, John C. Wellons III, William E. Whitehead, and John R. W. Kestle

OBJECTIVE

High-quality data comparing endoscopic third ventriculostomy (ETV) with choroid plexus cauterization (CPC) to shunt and ETV alone in North America are greatly lacking. To address this, the Hydrocephalus Clinical Research Network (HCRN) conducted a prospective study of ETV+CPC in infants. Here, these prospective data are presented and compared to prospectively collected data from a historical cohort of infants treated with shunt or ETV alone.

METHODS

From June 2014 to September 2015, infants (corrected age ≤ 24 months) requiring treatment for hydrocephalus with anatomy suitable for ETV+CPC were entered into a prospective study at 9 HCRN centers. The rate of procedural failure (i.e., the need for repeat hydrocephalus surgery, hydrocephalus-related death, or major postoperative neurological deficit) was determined. These data were compared with a cohort of similar infants who were treated with either a shunt (n = 969) or ETV alone (n = 74) by creating matched pairs on the basis of age and etiology. These data were obtained from the existing prospective HCRN Core Data Project. All patients were observed for at least 6 months.

RESULTS

A total of 118 infants underwent ETV+CPC (median corrected age 1.3 months; common etiologies including myelomeningocele [30.5%], intraventricular hemorrhage of prematurity [22.9%], and aqueductal stenosis [21.2%]). The 6-month success rate was 36%. The most common complications included seizures (5.1%) and CSF leak (3.4%). Important predictors of treatment success in the survival regression model included older age (p = 0.002), smaller preoperative ventricle size (p = 0.009), and greater degree of CPC (p = 0.02). The matching algorithm resulted in 112 matched pairs for ETV+CPC versus shunt alone and 34 matched pairs for ETV+CPC versus ETV alone. ETV+CPC was found to have significantly higher failure rate than shunt placement (p < 0.001). Although ETV+CPC had a similar failure rate compared with ETV alone (p = 0.73), the matched pairs included mostly infants with aqueductal stenosis and miscellaneous other etiologies but very few patients with intraventricular hemorrhage of prematurity.

CONCLUSIONS

Within a large and broad cohort of North American infants, our data show that overall ETV+CPC appears to have a higher failure rate than shunt alone. Although the ETV+CPC results were similar to ETV alone, this comparison was limited by the small sample size and skewed etiological distribution. Within the ETV+CPC group, greater extent of CPC was associated with treatment success, thereby suggesting that there are subgroups who might benefit from the addition of CPC. Further work will focus on identifying these subgroups.

Full access

Hannah E. Goldstein, Justin A. Neira, Matei Banu, Philipp R. Aldana, Bruno P. Braga, Douglas L. Brockmeyer, Michael L. DiLuna, Daniel H. Fulkerson, Todd C. Hankinson, Andrew H. Jea, Sean M. Lew, David D. Limbrick, Jonathan Martin, Joshua M. Pahys, Luis F. Rodriguez, Curtis J. Rozzelle, Gerald F. Tuite, Nicholas M. Wetjen, and Richard C. E. Anderson

OBJECTIVE

The long-term effects of surgical fusion on the growing subaxial cervical spine are largely unknown. Recent cross-sectional studies have demonstrated that there is continued growth of the cervical spine through the teenage years. The purpose of this multicenter study was to determine the effects of rigid instrumentation and fusion on the growing subaxial cervical spine by investigating vertical growth, cervical alignment, cervical curvature, and adjacent-segment instability over time.

METHODS

A total of 15 centers participated in this multi-institutional retrospective study. Cases involving children less than 16 years of age who underwent rigid instrumentation and fusion of the subaxial cervical spine (C-2 and T-1 inclusive) with at least 1 year of clinical and radiographic follow-up were investigated. Charts were reviewed for clinical data. Postoperative and most recent radiographs, CT, and MR images were used to measure vertical growth and assess alignment and stability.

RESULTS

Eighty-one patients were included in the study, with a mean follow-up of 33 months. Ninety-five percent of patients had complete clinical resolution or significant improvement in symptoms. Postoperative cervical kyphosis was seen in only 4 patients (5%), and none developed a swan-neck deformity, unintended adjacent-level fusion, or instability. Of patients with at least 2 years of follow-up, 62% demonstrated growth across the fusion construct. On average, vertical growth was 79% (4-level constructs), 83% (3-level constructs), or 100% (2-level constructs) of expected growth. When comparing the group with continued vertical growth to the one without growth, there were no statistically significant differences in terms of age, sex, underlying etiology, surgical approach, or number of levels fused.

CONCLUSIONS

Continued vertical growth of the subaxial spine occurs in nearly two-thirds of children after rigid instrumentation and fusion of the subaxial spine. Failure of continued vertical growth is not associated with the patient’s age, sex, underlying etiology, number of levels fused, or surgical approach. Further studies are needed to understand this dichotomy and determine the long-term biomechanical effects of surgery on the growing pediatric cervical spine.

Free access

Jay Riva-Cambrin, John R. W. Kestle, Curtis J. Rozzelle, Robert P. Naftel, Jessica S. Alvey, Ron W. Reeder, Richard Holubkov, Samuel R. Browd, D. Douglas Cochrane, David D. Limbrick Jr., Chevis N. Shannon, Tamara D. Simon, Mandeep S. Tamber, John C. Wellons III, William E. Whitehead, Abhaya V. Kulkarni, and for the Hydrocephalus Clinical Research Network

OBJECTIVE

Endoscopic third ventriculostomy combined with choroid plexus cauterization (ETV+CPC) has been adopted by many pediatric neurosurgeons as an alternative to placing shunts in infants with hydrocephalus. However, reported success rates have been highly variable, which may be secondary to patient selection, operative technique, and/or surgeon training. The objective of this prospective multicenter cohort study was to identify independent patient selection, operative technique, or surgical training predictors of ETV+CPC success in infants.

METHODS

This was a prospective cohort study nested within the Hydrocephalus Clinical Research Network’s (HCRN) Core Data Project (registry). All infants under the age of 2 years who underwent a first ETV+CPC between June 2006 and March 2015 from 8 HCRN centers were included. Each patient had a minimum of 6 months of follow-up unless censored by an ETV+CPC failure. Patient and operative risk factors of failure were examined, as well as formal ETV+CPC training, which was defined as traveling to and working with the experienced surgeons at CURE Children’s Hospital of Uganda. ETV+CPC failure was defined as the need for repeat ETV, shunting, or death.

RESULTS

The study contained 191 patients with a primary ETV+CPC conducted by 17 pediatric neurosurgeons within the HCRN. Infants under 6 months corrected age at the time of ETV+CPC represented 79% of the cohort. Myelomeningocele (26%), intraventricular hemorrhage associated with prematurity (24%), and aqueductal stenosis (17%) were the most common etiologies. A total of 115 (60%) of the ETV+CPCs were conducted by surgeons after formal training. Overall, ETV+CPC was successful in 48%, 46%, and 45% of infants at 6 months, 1 year, and 18 months, respectively. Young age (< 1 month) (adjusted hazard ratio [aHR] 1.9, 95% CI 1.0–3.6) and an etiology of post–intraventricular hemorrhage secondary to prematurity (aHR 2.0, 95% CI 1.1–3.6) were the only two independent predictors of ETV+CPC failure. Specific subgroups of ages within etiology categories were identified as having higher ETV+CPC success rates. Although training led to more frequent use of the flexible scope (p < 0.001) and higher rates of complete (> 90%) CPC (p < 0.001), training itself was not independently associated (aHR 1.1, 95% CI 0.7–1.8; p = 0.63) with ETV+CPC success.

CONCLUSIONS

This is the largest prospective multicenter North American study to date examining ETV+CPC. Formal ETV+CPC training was not found to be associated with improved procedure outcomes. Specific subgroups of ages within specific hydrocephalus etiologies were identified that may preferentially benefit from ETV+CPC.

Free access

Jonathan Pindrik, Jay Riva-Cambrin, Abhaya V. Kulkarni, Jessica S. Alvey, Ron W. Reeder, Ian F. Pollack, John C. Wellons III, Eric M. Jackson, Curtis J. Rozzelle, William E. Whitehead, David D. Limbrick Jr., Robert P. Naftel, Chevis Shannon, Patrick J. McDonald, Mandeep S. Tamber, Todd C. Hankinson, Jason S. Hauptman, Tamara D. Simon, Mark D. Krieger, Richard Holubkov, John R. W. Kestle, and for the Hydrocephalus Clinical Research Network

OBJECTIVE

Few studies have addressed surgical resource utilization—surgical revisions and associated hospital admission days—following shunt insertion or endoscopic third ventriculostomy (ETV) with or without choroid plexus cauterization (CPC) for CSF diversion in hydrocephalus. Study members of the Hydrocephalus Clinical Research Network (HCRN) investigated differences in surgical resource utilization between CSF diversion strategies in hydrocephalus in infants.

METHODS

Patients up to corrected age 24 months undergoing initial definitive treatment of hydrocephalus were reviewed from the prospectively maintained HCRN Core Data Project (Hydrocephalus Registry). Postoperative courses (at 1, 3, and 5 years) were studied for hydrocephalus-related surgeries (primary outcome) and hospital admission days related to surgical revision (secondary outcome). Data were summarized using descriptive statistics and compared using negative binomial regression, controlling for age, hydrocephalus etiology, and HCRN center. The study population was organized into 3 groups (ETV alone, ETV with CPC, and CSF shunt insertion) during the 1st postoperative year and 2 groups (ETV alone and CSF shunt insertion) during subsequent years due to limited long-term follow-up data.

RESULTS

Among 1090 patients, the majority underwent CSF shunt insertion (CSF shunt, 83.5%; ETV with CPC, 10.0%; and ETV alone, 6.5%). Patients undergoing ETV with CPC had a higher mean number of revision surgeries (1.2 ± 1.6) than those undergoing ETV alone (0.6 ± 0.8) or CSF shunt insertion (0.7 ± 1.3) over the 1st year after surgery (p = 0.005). At long-term follow-up, patients undergoing ETV alone experienced a nonsignificant lower mean number of revision surgeries (0.7 ± 0.9 at 3 years and 0.8 ± 1.3 at 5 years) than those undergoing CSF shunt insertion (1.1 ± 1.9 at 3 years and 1.4 ± 2.6 at 5 years) and exhibited a lower mean number of hospital admission days related to revision surgery (3.8 ± 10.3 vs 9.9 ± 27.0, p = 0.042).

CONCLUSIONS

Among initial treatment strategies for hydrocephalus, ETV with CPC yielded a higher surgical revision rate within 1 year after surgery. Patients undergoing ETV alone exhibited a nonsignificant lower mean number of surgical revisions than CSF shunt insertion at 3 and 5 years postoperatively. Additionally, the ETV-alone cohort demonstrated significantly fewer hospital admission days related to surgical management of hydrocephalus within 3 years after surgery. These findings suggest a time-dependent benefit of ETV over CSF shunt insertion regarding surgical resource utilization.

Restricted access

Jason S. Hauptman, John Kestle, Jay Riva-Cambrin, Abhaya V. Kulkarni, Samuel R. Browd, Curtis J. Rozzelle, William E. Whitehead, Robert P. Naftel, Jonathan Pindrik, David D. Limbrick Jr., James Drake, John C. Wellons III, Mandeep S. Tamber, Chevis N. Shannon, Tamara D. Simon, Ian F. Pollack, Patrick J. McDonald, Mark D. Krieger, Jason Chu, Todd C. Hankinson, Eric M. Jackson, Jessica S. Alvey, Ron W. Reeder, Richard Holubkov, and for the Hydrocephalus Clinical Research Network

OBJECTIVE

The primary objective of this study was to use the prospective Hydrocephalus Clinical Research Network (HCRN) registry to determine clinical predictors of fast time to shunt failure (≤ 30 days from last revision) and ultrafast time to failure (≤ 7 days from last revision).

METHODS

Revisions (including those due to infection) to permanent shunt placements that occurred between April 2008 and November 2017 for patients whose entire shunt experience was recorded in the registry were analyzed. All registry data provided at the time of initial shunt placement and subsequent revision were reviewed. Key variables analyzed included etiology of hydrocephalus, age at time of initial shunt placement, presence of slit ventricles on imaging at revision, whether the ventricles were enlarged at the time of revision, and presence of prior fast failure events. Univariable and multivariable analyses were performed to find key predictors of fast and ultrafast failure events.

RESULTS

A cohort of 1030 patients with initial shunt insertions experienced a total of 1995 revisions. Of the 1978 revision events with complete records, 1216 (61.5%) shunts remained functional for more than 1 year, and 762 (38.5%) failed within 1 year of the procedure date. Of those that failed within 1 year, 423 (55.5%) failed slowly (31–365 days) and 339 (44.5%) failed fast (≤ 30 days). Of the fast failures, 131 (38.6%) were ultrafast (≤ 7 days). In the multivariable analysis specified a priori, etiology of hydrocephalus (p = 0.005) and previous failure history (p = 0.011) were independently associated with fast failure. Age at time of procedure (p = 0.042) and etiology of hydrocephalus (p = 0.004) were independently associated with ultrafast failure. These relationships in both a priori models were supported by the data-driven multivariable models as well.

CONCLUSIONS

Neither the presence of slit ventricle syndrome nor ventricular enlargement at the time of shunt failure appears to be a significant predictor of repeated, rapid shunt revisions. Age at the time of procedure, etiology of hydrocephalus, and the history of previous failure events seem to be important predictors of fast and ultrafast shunt failure. Further work is required to understand the mechanisms of these risk factors as well as mitigation strategies.

Restricted access

Mandeep S. Tamber, John R. W. Kestle, Ron W. Reeder, Richard Holubkov, Jessica Alvey, Samuel R. Browd, James M. Drake, Abhaya V. Kulkarni, David D. Limbrick Jr., Patrick J. McDonald, Curtis J. Rozzelle, Tamara D. Simon, Robert Naftel, Chevis N. Shannon, John C. Wellons III, William E. Whitehead, Jay Riva-Cambrin, and for the Hydrocephalus Clinical Research Network

OBJECTIVE

Analysis of temporal trends in patient populations and procedure types may provide important information regarding the evolution of hydrocephalus treatment. The purpose of this study was to use the Hydrocephalus Clinical Research Network’s Core Data Project to identify meaningful trends in patient characteristics and the surgical management of pediatric hydrocephalus over a 9-year period.

METHODS

The Core Data Project prospectively collected patient and procedural data on the study cohort from 9 centers between 2008 and 2016. Logistic and Poisson regression were used to test for significant temporal trends in patient characteristics and new and revision hydrocephalus procedures.

RESULTS

The authors analyzed 10,149 procedures in 5541 patients. New procedures for hydrocephalus (shunt or endoscopic third ventriculostomy [ETV]) decreased by 1.5%/year (95% CI −3.1%, +0.1%). During the study period, new shunt insertions decreased by 6.5%/year (95% CI −8.3%, −4.6%), whereas new ETV procedures increased by 12.5%/year (95% CI 9.3%, 15.7%). Revision procedures for hydrocephalus (shunt or ETV) decreased by 4.2%/year (95% CI −5.2%, −3.1%), driven largely by a decrease of 5.7%/year in shunt revisions (95% CI −6.8%, −4.6%). Concomitant with the observed increase in new ETV procedures was an increase in ETV revisions (13.4%/year, 95% CI 9.6%, 17.2%). Because revisions decreased at a faster rate than new procedures, the Revision Quotient (ratio of revisions to new procedures) for the Network decreased significantly over the study period (p = 0.0363). No temporal change was observed in the age or etiology characteristics of the cohort, although the proportion of patients with one or more complex chronic conditions significantly increased over time (p = 0.0007).

CONCLUSIONS

Over a relatively short period, important changes in hydrocephalus care have been observed. A significant temporal decrease in revision procedures amid the backdrop of a more modest change in new procedures appears to be the most notable finding and may be indicative of an improvement in the quality of surgical care for pediatric hydrocephalus. Further studies will be directed at elucidation of the possible drivers of the observed trends.

Restricted access

Mandeep S. Tamber, John R. W. Kestle, Ron W. Reeder, Richard Holubkov, Jessica Alvey, Samuel R. Browd, James M. Drake, Abhaya V. Kulkarni, David D. Limbrick Jr., Patrick J. McDonald, Curtis J. Rozzelle, Tamara D. Simon, Robert Naftel, Chevis N. Shannon, John C. Wellons III, William E. Whitehead, Jay Riva-Cambrin, and for the Hydrocephalus Clinical Research Network

OBJECTIVE

Analysis of temporal trends in patient populations and procedure types may provide important information regarding the evolution of hydrocephalus treatment. The purpose of this study was to use the Hydrocephalus Clinical Research Network’s Core Data Project to identify meaningful trends in patient characteristics and the surgical management of pediatric hydrocephalus over a 9-year period.

METHODS

The Core Data Project prospectively collected patient and procedural data on the study cohort from 9 centers between 2008 and 2016. Logistic and Poisson regression were used to test for significant temporal trends in patient characteristics and new and revision hydrocephalus procedures.

RESULTS

The authors analyzed 10,149 procedures in 5541 patients. New procedures for hydrocephalus (shunt or endoscopic third ventriculostomy [ETV]) decreased by 1.5%/year (95% CI −3.1%, +0.1%). During the study period, new shunt insertions decreased by 6.5%/year (95% CI −8.3%, −4.6%), whereas new ETV procedures increased by 12.5%/year (95% CI 9.3%, 15.7%). Revision procedures for hydrocephalus (shunt or ETV) decreased by 4.2%/year (95% CI −5.2%, −3.1%), driven largely by a decrease of 5.7%/year in shunt revisions (95% CI −6.8%, −4.6%). Concomitant with the observed increase in new ETV procedures was an increase in ETV revisions (13.4%/year, 95% CI 9.6%, 17.2%). Because revisions decreased at a faster rate than new procedures, the Revision Quotient (ratio of revisions to new procedures) for the Network decreased significantly over the study period (p = 0.0363). No temporal change was observed in the age or etiology characteristics of the cohort, although the proportion of patients with one or more complex chronic conditions significantly increased over time (p = 0.0007).

CONCLUSIONS

Over a relatively short period, important changes in hydrocephalus care have been observed. A significant temporal decrease in revision procedures amid the backdrop of a more modest change in new procedures appears to be the most notable finding and may be indicative of an improvement in the quality of surgical care for pediatric hydrocephalus. Further studies will be directed at elucidation of the possible drivers of the observed trends.