Browse

You are looking at 1 - 10 of 27 items for :

  • Journal of Neurosurgery: Pediatrics x
  • All content x
  • By Author: Rocque, Brandon G. x
Clear All
Full access

Alexandra Cutillo, Kathrin Zimmerman, Susan Davies, Avi Madan-Swain, Wendy Landier, Anastasia Arynchyna, and Brandon G. Rocque

OBJECTIVE

The goal of this study was to determine what strategies caregivers use to cope with the stress of a child who has recently undergone surgical treatment for a newly diagnosed brain tumor. Results will be used to improve psychosocial assessments and treatments provided to these families during initial hospitalization.

METHODS

Caregivers of children with newly diagnosed brain tumors admitted to Children’s of Alabama were enrolled during the child’s initial hospitalization for surgical treatment from April 2016 to August 2017. The single-item, National Comprehensive Cancer Network visual analog Distress Thermometer (DT) was administered. Clinical and demographic variables were collected from the medical record. Approximately 1 month after patients were discharged from the hospital, caregivers participated in a semistructured interview that included questions about parent and family coping strategies. Broad questions about stress management since diagnosis were followed by specific questions about individual coping strategies. Interviews were recorded, transcribed, and coded for common themes. Themes were broadly characterized as adaptive versus maladaptive coping. Analysis was then performed to determine if DT scores or clinical or demographic factors were associated with the presence of maladaptive coping using a concurrent triangulation mixed-methods design.

RESULTS

Caregivers identified several adaptive coping strategies, such as active coping, acceptance coping, emotion-focused coping, spiritual coping, social support, and posttraumatic growth. Maladaptive coping strategies were mostly categorized as avoidant coping. Caregivers endorsed multiple different coping strategies (mean of 4.59 strategies per caregiver). No clinical or demographic variables, whether the tumor was benign or malignant, or the DT score correlated with caregiver endorsement of maladaptive coping strategies.

CONCLUSIONS

Caregivers of children newly diagnosed with brain tumors employ a number of coping strategies, some of which are maladaptive. The authors have not identified any method for predicting who is at risk for maladaptive coping. Assessment of coping skills and education about coping have the potential to improve overall care delivery to these families.

Full access

Brandon G. Rocque, Alexandra Cutillo, Kathrin Zimmerman, Anastasia Arynchyna, Susan Davies, Wendy Landier, and Avi Madan-Swain

OBJECTIVE

Hospitalization for a newly diagnosed pediatric brain tumor is an extremely stressful time for a family, but this period has not been the focus of rigorous study. The purpose of this study was to quantify distress and psychosocial risk in this population to improve psychosocial care delivery.

METHODS

The authors administered the National Comprehensive Cancer Network Distress Thermometer (DT) and the Psychosocial Assessment Tool 2.0 (PAT) to primary caregivers of all children admitted to Children’s of Alabama with a new brain tumor between April 2016 and August 2017. The DT is a single-item measure of distress (scale range 0–10). The PAT (range 0–7) stratifies families by risk level: a score less than 1.0 indicates universal risk level (risk typically experienced during hospitalization); a score of 1.0–2.0 indicates targeted risk (specific psychosocial difficulties that impact medical treatment); and a score higher than 2.0 indicates clinically significant risk. Demographic and clinical information was abstracted from each child’s medical record. A correlation matrix using nonparametric statistics was created between abstracted data and the DT and PAT scores.

RESULTS

Forty primary caregivers were enrolled (of 49 eligible), with the patient age ranging from newborn to 17 years (mean 7.7 years). Twenty-five (63%) of the children were male, and 24 (60%) were white, non-Hispanic. Mean and median DT scores were 7.2 (SD 2.6) and 7, respectively. However, 12 (30%) rated their distress 10/10, and 85% rated distress 5 or greater. PAT scores ranged from 0.0 to 2.36 with mean and median scores of 0.89 (SD 0.50) and 0.86, respectively. PAT results for 16 (40%) families were in the targeted or clinical range, indicating psychosocial factors that have the potential to interfere with medical treatment. No clinical or demographic variable correlated significantly with the DT or PAT score.

CONCLUSIONS

Families of children with newly diagnosed brain tumors experience high levels of distress and psychosocial risk. This work will serve as the foundation for efforts to standardize psychosocial evaluation for newly diagnosed pediatric neurosurgical patients, and to create protocols that organize existing hospital-based psychosocial support services. These efforts have the potential to improve patient and family satisfaction as well as treatment outcomes.

Full access

Brandon G. Rocque, Bonita S. Agee, Eric M. Thompson, Mark Piedra, Lissa C. Baird, Nathan R. Selden, Stephanie Greene, Christopher P. Deibert, Todd C. Hankinson, Sean M. Lew, Bermans J. Iskandar, Taryn M. Bragg, David Frim, Gerald Grant, Nalin Gupta, Kurtis I. Auguste, Dimitrios C. Nikas, Michael Vassilyadi, Carrie R. Muh, Nicholas M. Wetjen, and Sandi K. Lam

OBJECTIVE

In children, the repair of skull defects arising from decompressive craniectomy presents a unique set of challenges. Single-center studies have identified different risk factors for the common complications of cranioplasty resorption and infection. The goal of the present study was to determine the risk factors for bone resorption and infection after pediatric cranioplasty.

METHODS

The authors conducted a multicenter retrospective case study that included all patients who underwent cranioplasty to correct a skull defect arising from a decompressive craniectomy at 13 centers between 2000 and 2011 and were less than 19 years old at the time of cranioplasty. Prior systematic review of the literature along with expert opinion guided the selection of variables to be collected. These included: indication for craniectomy; history of abusive head trauma; method of bone storage; method of bone fixation; use of drains; size of bone graft; presence of other implants, including ventriculoperitoneal (VP) shunt; presence of fluid collections; age at craniectomy; and time between craniectomy and cranioplasty.

RESULTS

A total of 359 patients met the inclusion criteria. The patients’ mean age was 8.4 years, and 51.5% were female. Thirty-eight cases (10.5%) were complicated by infection. In multivariate analysis, presence of a cranial implant (primarily VP shunt) (OR 2.41, 95% CI 1.17–4.98), presence of gastrostomy (OR 2.44, 95% CI 1.03–5.79), and ventilator dependence (OR 8.45, 95% CI 1.10–65.08) were significant risk factors for cranioplasty infection. No other variable was associated with infection.

Of the 240 patients who underwent a cranioplasty with bone graft, 21.7% showed bone resorption significant enough to warrant repeat surgical intervention. The most important predictor of cranioplasty bone resorption was age at the time of cranioplasty. For every month of increased age the risk of bone flap resorption decreased by 1% (OR 0.99, 95% CI 0.98–0.99, p < 0.001). Other risk factors for resorption in multivariate models were the use of external ventricular drains and lumbar shunts.

CONCLUSIONS

This is the largest study of pediatric cranioplasty outcomes performed to date. Analysis included variables found to be significant in previous retrospective reports. Presence of a cranial implant such as VP shunt is the most significant risk factor for cranioplasty infection, whereas younger age at cranioplasty is the dominant risk factor for bone resorption.

Full access

Irene Kim, Betsy Hopson, Inmaculada Aban, Elias B. Rizk, Mark S. Dias, Robin Bowman, Laurie L. Ackerman, Michael D. Partington, Heidi Castillo, Jonathan Castillo, Paula R. Peterson, Jeffrey P. Blount, and Brandon G. Rocque

OBJECTIVE

The purpose of this study was to determine the rate of decompression for Chiari malformation type II in individuals with myelomeningocele in the National Spina Bifida Patient Registry (NSBPR). In addition, the authors explored the variation in rates of Chiari II decompression across NSBPR institutions, examined the relationship between Chiari II decompression and functional lesion level of the myelomeningocele, age, and need for tracheostomy, and they evaluated for temporal trends in rates of Chiari II decompression.

METHODS

The authors queried the NSBPR to identify all individuals with myelomeningocele between 2009 and 2015. Among these patients, they identified individuals who had undergone at least 1 Chiari II decompression as well as those who had undergone tracheostomy. For each participating NSBPR institution, the authors calculated the proportion of patients enrolled at that site who underwent Chiari II decompression. Logistic regression was performed to analyze the relationship between Chiari II decompression, functional lesion level, age at decompression, and history of tracheostomy.

RESULTS

Of 4448 individuals with myelomeningocele identified from 26 institutions, 407 (9.15%) had undergone at least 1 Chiari II decompression. Fifty-one patients had undergone tracheostomy. Logistic regression demonstrated a statistically significant relationship between Chiari II decompression and functional lesion level of the myelomeningocele, with a more rostral lesion level associated with a higher likelihood of posterior fossa decompression. Similarly, children born before 2005 and those with history of tracheostomy had a significantly higher likelihood of Chiari II decompression. There was no association between functional lesion level and need for tracheostomy. However, among those children who underwent Chiari II decompression, the likelihood of also undergoing tracheostomy increased significantly with younger age at decompression.

CONCLUSIONS

The rate of Chiari II decompression in patients with myelomeningocele in the NSBPR is consistent with that in previously published literature. There is a significant relationship between Chiari II decompression and functional lesion level of the myelomeningocele, which has not previously been reported. Younger children who undergo Chiari II decompression are more likely to have undergone tracheostomy. There appears to be a shift away from Chiari II decompression, as children born before 2005 were more likely to undergo Chiari II decompression than those born in 2005 or later.

Full access

Irene Kim, Betsy Hopson, Inmaculada Aban, Elias B. Rizk, Mark S. Dias, Robin Bowman, Laurie L. Ackerman, Michael D. Partington, Heidi Castillo, Jonathan Castillo, Paula R. Peterson, Jeffrey P. Blount, and Brandon G. Rocque

OBJECTIVE

Although the majority of patients with myelomeningocele have hydrocephalus, reported rates of hydrocephalus treatment vary widely. The purpose of this study was to determine the rate of surgical treatment for hydrocephalus in patients with myelomeningocele in the National Spina Bifida Patient Registry (NSBPR). In addition, the authors explored the variation in shunting rates across NSBPR institutions, examined the relationship between hydrocephalus, and the functional lesion level of the myelomeningocele, and evaluated for temporal trends in rates of treated hydrocephalus.

METHODS

The authors queried the NSBPR to identify all patients with myelomeningoceles. Individuals were identified as having been treated for hydrocephalus if they had undergone at least 1 hydrocephalus-related operation. For each participating NSBPR institution, the authors calculated the proportion of patients with treated hydrocephalus who were enrolled at that site. Logistic regression was performed to analyze the relationship between hydrocephalus and the functional lesion level of the myelomeningocele and to compare the rate of treated hydrocephalus in children born before 2005 with those born in 2005 or later.

RESULTS

A total of 4448 patients with myelomeningocele were identified from 26 institutions, of whom 3558 patients (79.99%) had undergone at least 1 hydrocephalus-related operation. The rate of treated hydrocephalus ranged from 72% to 96% among institutions enrolling more than 10 patients. This difference in treatment rates between centers was statistically significant (p < 0.001). Insufficient data were available in the NSBPR to analyze reasons for the different rates of hydrocephalus treatment between sites. Multivariate logistic regression demonstrated that more rostral functional lesion levels were associated with higher rates of treated hydrocephalus (p < 0.001) but demonstrated no significant difference in hydrocephalus treatment rates between children born before versus after 2005.

CONCLUSIONS

The rate of hydrocephalus treatment in patients with myelomeningocele in the NSBPR is 79.99%, which is consistent with the rates in previously published literature. The authors’ data demonstrate a clear association between functional lesion level of the myelomeningocele and the need for hydrocephalus treatment.

Free access

Michael C. Dewan, Jaims Lim, Stephen R. Gannon, David Heaner, Matthew C. Davis, Brandy Vaughn, Joshua J. Chern, Brandon G. Rocque, Paul Klimo Jr., John C. Wellons III, and Robert P. Naftel

OBJECTIVE

It has been suggested that the treatment of infant hydrocephalus results in different craniometric changes depending upon whether ventriculoperitoneal shunt (VPS) placement or endoscopic third ventriculostomy with choroid plexus cauterization (ETV/CPC) is performed. Without an objective and quantitative description of expected changes to the infant cranium and ventricles following ETV/CPC, asserting successful treatment of hydrocephalus is difficult. By comparing infants successfully treated via ETV/CPC or VPS surgery, the authors of this study aimed to define the expected postoperative cranial and ventricular alterations at the time of clinical follow-up.

METHODS

Patients who underwent successful treatment of hydrocephalus at 4 institutions with either VPS placement or ETV/CPC were matched in a 3:1 ratio on the basis of age and etiology. Commonly used cranial parameters (including head circumference [HC], HC z-score, fontanelle status, and frontooccipital horn ratio [FOHR]) were compared pre- and postoperatively between treatment cohorts. First, baseline preoperative values were compared to ensure cohort equivalence. Next, postoperative metrics, including the relative change in metrics, were compared between treatment groups using multivariate linear regression.

RESULTS

Across 4 institutions, 18 ETV/CPC-treated and 54 VPS-treated infants with hydrocephalus were matched and compared at 6 months postoperatively. The most common etiologies of hydrocephalus were myelomeningocele (61%), followed by congenital communicating hydrocephalus (17%), aqueductal stenosis (11%), and intraventricular hemorrhage (6%). The mean age at the time of CSF diversion was similar between ETV/CPC- and VPS-treated patients (3.4 vs 2.9 months; p = 0.69), as were all preoperative cranial hydrocephalus metrics (p > 0.05). Postoperatively, the ventricle size FOHR decreased significantly more following VPS surgery (−0.15) than following ETV/CPC (−0.02) (p < 0.001), yielding a lower postoperative FOHR in the VPS arm (0.42 vs 0.51; p = 0.01). The HC percentile was greater in the ETV/CPC cohort than in the VPS-treated patients (76th vs 54th percentile; p = 0.046). A significant difference in the postoperative z-score was not observed. With both treatment modalities, a bulging fontanelle reliably normalized at last follow-up.

CONCLUSIONS

Clinical and radiographic parameters following successful treatment of hydrocephalus in infants differed between ETV/CPC and VPS treatment. At 6 months post-ETV/CPC, ventricle size remained unchanged, whereas VPS-treated ventricles decreased to a near-normal FOHR. The HC growth control between the procedures was similar, although the final HC percentile may be lower after VPS. The fontanelle remained a reliable indicator of success for both treatments. This study establishes expected cranial and ventricular parameters following ETV/CPC, which may be used to guide preoperative counseling and postoperative decision making.

Full access

Edward O. Komolafe, Ibironke O. Ogunbameru, Chiazor U. Onyia, Oluwafemi F. Owagbemi, and Fred S. Ige-Orhionkpaibima

Full access

Ross L. Dawkins, Joseph H. Miller, Omar I. Ramadan, Michael C. Lysek, Elizabeth N. Kuhn, Brandon G. Rocque, Michael J. Conklin, R. Shane Tubbs, Beverly C. Walters, Bonita S. Agee, and Curtis J. Rozzelle

OBJECTIVE

There are many classification systems for injuries of the thoracolumbar spine. The recent Thoracolumbar Injury Classification and Severity Score (TLICS) has been shown to be a reliable tool for adult patients. The aim of this study was to assess the reliability of the TLICS system in pediatric patients. The validity of the TLICS system is assessed in a companion paper.

METHODS

The medical records of pediatric patients with acute, traumatic thoracolumbar fractures at a single Level 1 trauma center were retrospectively reviewed. A TLICS was calculated for each patient using CT and MRI, along with the neurological examination recorded in the patient’s medical record. TLICSs were compared with the type of treatment received. Five raters scored all patients separately to assess interrater reliability.

RESULTS

TLICS calculations were completed for 81 patients. The mean patient age was 10.9 years. Girls represented 51.8% of the study population, and 80% of the study patients were white. The most common mechanisms of injury were motor vehicle accidents (60.5%), falls (17.3%), and all-terrain vehicle accidents (8.6%). The mean TLICS was 3.7 ± 2.8. Surgery was the treatment of choice for 33.3% of patients. The agreement between the TLICS-suggested treatment and the actual treatment received was statistically significant (p < 0.0001). The interrater reliability of the TLICS system ranged from moderate to very good, with a Fleiss’ generalized kappa (κ) value of 0.69 for the TLICS treatment suggestion among all patients; however, interrater reliability decreased when MRI was used to contribute to the TLICS. The κ value decreased from 0.73 to 0.57 for patients with CT only vs patients with CT/MRI or MRI only, respectively (p < 0.0001). Furthermore, the agreement between suggested treatment and actual treatment was worse when MRI was used as part of injury assessment.

CONCLUSIONS

The TLICS system demonstrates good interrater reliability among physicians assessing thoracolumbar fracture treatment in pediatric patients. Physicians should be cautious when using MRI to aid in the surgical decision-making process.