Browse

You are looking at 1 - 10 of 10 items for :

  • Journal of Neurosurgery: Spine x
  • Refine by Access: all x
  • By Author: Preul, Mark C. x
Clear All
Full access

Sam Safavi-Abbasi, Timothy B. Mapstone, Jacob B. Archer, Christopher Wilson, Nicholas Theodore, Robert F. Spetzler, and Mark C. Preul

An understanding of the underlying pathophysiology of tethered cord syndrome (TCS) and modern management strategies have only developed within the past few decades. Current understanding of this entity first began with the understanding and management of spina bifida; this later led to the gradual recognition of spina bifida occulta and the symptoms associated with tethering of the filum terminale. In the 17th century, Dutch anatomists provided the first descriptions and initiated surgical management efforts for spina bifida. In the 19th century, the term “spina bifida occulta” was coined and various presentations of spinal dysraphism were appreciated. The association of urinary, cutaneous, and skeletal abnormalities with spinal dysraphism was recognized in the 20th century. Early in the 20th century, some physicians began to suspect that traction on the conus medullaris caused myelodysplasia-related symptoms and that prophylactic surgical management could prevent the occurrence of clinical manifestations. It was not, however, until later in the 20th century that the term “tethered spinal cord” and the modern management of TCS were introduced. This gradual advancement in understanding at a time before the development of modern imaging modalities illustrates how, over the centuries, anatomists, pathologists, neurologists, and surgeons used clinical examination, a high level of suspicion, and interest in the subtle and overt clinical appearances of spinal dysraphism and TCS to advance understanding of pathophysiology, clinical appearance, and treatment of this entity. With the availability of modern imaging, spinal dysraphism can now be diagnosed and treated as early as the intrauterine stage.

Full access

Sergiy V. Kushchayev, Morgan B. Giers, Doris Hom Eng, Nikolay L. Martirosyan, Jennifer M. Eschbacher, Martin M. Mortazavi, Nicholas Theodore, Alyssa Panitch, and Mark C. Preul

OBJECTIVE

Spinal cord injury occurs in 2 phases. The initial trauma is followed by inflammation that leads to fibrous scar tissue, glial scarring, and cavity formation. Scarring causes further axon death around and above the injury. A reduction in secondary injury could lead to functional improvement. In this study, hyaluronic acid (HA) hydrogels were implanted into the gap formed in the hemisected spinal cord of Sprague-Dawley rats in an attempt to attenuate damage and regenerate tissue.

METHODS

A T-10 hemisection spinal cord injury was created in adult male Sprague-Dawley rats; the rats were assigned to a sham, control (phosphate-buffered saline), or HA hydrogel–treated group. One cohort of 23 animals was followed for 12 weeks and underwent weekly behavioral assessments. At 12 weeks, retrograde tracing was performed by injecting Fluoro-Gold in the left L-2 gray matter. At 14 weeks, the animals were killed. The volume of the lesion and the number of cells labeled from retrograde tracing were calculated. Animals in a separate cohort were killed at 8 or 16 weeks and perfused for immunohistochemical analysis and transmission electron microscopy. Samples were stained using H & E, neurofilament stain (neurons and axons), silver stain (disrupted axons), glial fibrillary acidic protein stain (astrocytes), and Iba1 stain (mononuclear cells).

RESULTS

The lesions were significantly smaller in size and there were more retrograde-labeled cells in the red nuclei of the HA hydrogel–treated rats than in those of the controls; however, the behavioral assessments revealed no differences between the groups. The immunohistochemical analyses revealed decreased fibrous scarring and increased retention of organized intact axonal tissue in the HA hydrogel–treated group. There was a decreased presence of inflammatory cells in the HA hydrogel–treated group. No axonal or neuronal regeneration was observed.

CONCLUSIONS

The results of these experiments show that HA hydrogel had a neuroprotective effect on the spinal cord by decreasing the magnitude of secondary injury after a lacerating spinal cord injury. Although regeneration and behavioral improvement were not observed, the reduction in disorganized scar tissue and the retention of neurons near and above the lesion are important for future regenerative efforts. In addition, this gel would be useful as the base substrate in the development of a more complex scaffold.

Full access

Paul A. Gardner, Juan C. Fernandez-Miranda, Carl H. Snyderman, and Eric W. Wang

Full access

Nikolay L. Martirosyan, M. Yashar S. Kalani, G. Michael Lemole Jr., Robert F. Spetzler, Mark C. Preul, and Nicholas Theodore

OBJECT

The arterial basket of the conus medullaris (ABCM) consists of 1 or 2 arteries arising from the anterior spinal artery (ASA) and circumferentially connecting the ASA and the posterior spinal arteries (PSAs). The arterial basket can be involved in arteriovenous fistulas and arteriovenous malformations of the conus. In this article, the authors describe the microsurgical anatomy of the ABCM with emphasis on its morphometric parameters and important role in the intrinsic blood supply of the conus medullaris.

METHODS

The authors performed microsurgical dissections on 16 formalin-fixed human spinal cords harvested within 24 hours of death. The course, diameter, and branching angles of the arteries comprising the ABCM were then identified and measured. In addition, histological sections were obtained to identify perforating vessels arising from the ABCM.

RESULTS

The ASA tapers as it nears the conus medullaris (mean preconus diameter 0.7 ± 0.12 mm vs mean conus diameter 0.38 ± 0.08 mm). The ASA forms an anastomotic basket with the posterior spinal artery (PSA) via anastomotic branches. In most of the specimens (n= 13, 81.3%), bilateral arteries formed connections between the ASA and PSA. However, in the remaining specimens (n= 3, 18.7%), a unilateral right-sided anastomotic artery was identified. The mean diameter of the right ABCM branch was 0.49 ± 0.13 mm, and the mean diameter of the left branch was 0.53 ± 0.14 mm. The mean branching angles of the arteries forming the anastomotic basket were 95.9° ± 36.6° and 90° ± 34.3° for the right- and left-sided arteries, respectively. In cases of bilateral arterial anastomoses between the ASA and PSA, the mean distance between the origins of the arteries was 4.5 ± 3.3 mm. Histological analysis revealed numerous perforating vessels supplying tissue of the conus medullaris.

CONCLUSIONS

The ABCM is a critical anastomotic connection between the ASA and PSA, which play an important role in the intrinsic blood supply of the conus medullaris. The ABCM provides an important compensatory function in the blood supply of the spinal cord. Its involvement in conus medullaris vascular malformations makes it a critical anatomical structure.

Full access

George A. C. Mendes, Curtis A. Dickman, Nestor G. Rodriguez-Martinez, Samuel Kalb, Neil R. Crawford, Volker K. H. Sonntag, Mark C. Preul, and Andrew S. Little

OBJECT

The primary disadvantage of the posterior cervical approach for atlantoaxial stabilization after odontoidectomy is that it is conducted as a second-stage procedure. The goal of the current study is to assess the surgical feasibility and biomechanical performance of an endoscopic endonasal surgical technique for C1–2 fixation that may eliminate the need for posterior fixation after odontoidectomy.

METHODS

The first step of the study was to perform endoscopic endonasal anatomical dissections of the craniovertebral junction in 10 silicone-injected fixed cadaveric heads to identify relevant anatomical landmarks. The second step was to perform a quantitative analysis using customized software in 10 reconstructed adult cervical spine CT scans to identify the optimal screw entry point and trajectory. The third step was biomechanical flexibility testing of the construct and comparison with the posterior C1–2 transarticular fixation in 14 human cadaveric specimens.

RESULTS

Adequate surgical exposure and identification of the key anatomical landmarks, such as C1–2 lateral masses, the C-1 anterior arch, and the odontoid process, were provided by the endonasal endoscopic approach in all specimens. Radiological analysis of anatomical detail suggested that the optimal screw entry point was on the anterior aspect of the C-1 lateral mass near the midpoint, and the screw trajectory was inferiorly and slightly laterally directed. The custommade angled instrumentation was crucial for screw placement. Biomechanical analysis suggested that anterior C1–2 fixation compared favorably to posterior fixation by limiting flexion-extension, axial rotation, and lateral bending (p > 0.3).

CONCLUSIONS

This is the first study that demonstrates the feasibility of an endoscopic endonasal technique for C1–2 fusion. This novel technique may have clinical utility by eliminating the need for a second-stage posterior fixation operation in certain patients undergoing odontoidectomy.

Restricted access

Nikolay L. Martirosyan, Jeanne S. Feuerstein, Nicholas Theodore, Daniel D. Cavalcanti, Robert F. Spetzler, and Mark C. Preul

The authors present a review of spinal cord blood supply, discussing the anatomy of the vascular system and physiological aspects of blood flow regulation in normal and injured spinal cords. Unique anatomical functional properties of vessels and blood supply determine the susceptibility of the spinal cord to damage, especially ischemia. Spinal cord injury (SCI), for example, complicating thoracoabdominal aortic aneurysm repair is associated with ischemic trauma. The rate of this devastating complication has been decreased significantly by instituting physiological methods of protection. Traumatic SCI causes complex changes in spinal cord blood flow, which are closely related to the severity of injury. Manipulating physiological parameters such as mean arterial blood pressure and intrathecal pressure may be beneficial for patients with an SCI. Studying the physiopathological processes of the spinal cord under vascular compromise remains challenging because of its central role in almost all of the body's hemodynamic and neurofunctional processes.

Restricted access

Mark C. Preul, Patrick K. Campbell, David S. Garlick, and Robert F. Spetzler

Object

The aim of this study was to evaluate the application and effects of a novel, nonswelling, polyethylene glycol-based hydrogel adhesion barrier and sealant in a canine laminectomy model of CSF leakage and adhesion formation.

Methods

After full-width L-2 and L-5 laminectomies, 1-cm midline durotomies were created and sutured closed, except for the last 1–2 mm on the cranial end to create spontaneous CSF leakage. All 5 control animals received no further treatment. Experimental animals received hydrogel at both durotomy sites via either the Dual Liquid applicator (5 animals) or MicroMyst gas-assisted sprayer (5 animals). Sealing of the CSF leak was confirmed by Valsalva maneuver. At 2 months, 2 animals from each group were killed to evaluate dural healing and epidural adhesion formation. The remaining animals were similarly evaluated 4 months after surgery. One animal died at 66 days due to a cause unrelated to hydrogel treatment.

Results

In hydrogel-treated animals, all leaking durotomies were sealed intraoperatively. All animals recovered uneventfully. There were no treatment-related health effects. MicroMyst hydrogel application was more controlled, slower, and significantly less thick (p = 0.0094) than Dual Liquid application. All 5 control animals developed subcutaneous CSF accumulations under the incision within days of surgery, compared with only 1 of 10 hydrogel-treated animals (p = 0.002). At 2 and 4 months, control laminectomy sites showed extensive, dense epidural adhesions blending with neodura, compared with hydrogel-treated sites (p < 0.0001 and p = 0.0234, respectively). At 2 months in hydrogel-treated animals, gel filled the epidural space and no epidural adhesions were noted (p < 0.0001 relative to controls). At 4 months, the hydrogel was absorbed. The hydrogel space was filled with scant, loosely organized connective tissue.

Conclusions

Hydrogel prevented CSF leakage and mitigated epidural scarring without affecting healing of the dura or laminectomy site. The safety profile of the hydrogel appears favorable due to its synthetic composition, polyethylene glycol chemistry, minimal local tissue response, and lack of neurological deficits. Controlled application of such hydrogel materials may reduce the incidence of postoperative leaks, prevent adhesion formation and thus improve recovery from spinal surgery, and improve identification of tissue planes for reoperations.

Restricted access

Nicholas C. Bambakidis, Eric M. Horn, Peter Nakaji, Nicholas Theodore, Elizabeth Bless, Tammy Dellovade, Chiyuan Ma, Xukui Wang, Mark C. Preul, Stephen W. Coons, Robert F. Spetzler, and Volker K. H. Sonntag

Object

Sonic hedgehog (Shh) is a glycoprotein molecule that upregulates the transcription factor Gli1. The Shh protein plays a critical role in the proliferation of endogenous neural precursor cells when directly injected into the spinal cord after a spinal cord injury in adult rodents. Small-molecule agonists of the hedgehog (Hh) pathway were used in an attempt to reproduce these findings through intravenous administration.

Methods

The expression of Gli1 was measured in rat spinal cord after the intravenous administration of an Hh agonist. Ten adult rats received a moderate contusion and were treated with either an Hh agonist (10 mg/kg, intravenously) or vehicle (5 rodents per group) 1 hour and 4 days after injury. The rats were killed 5 days postinjury. Tissue samples were immediately placed in fixative. Samples were immunohistochemically stained for neural precursor cells, and these cells were counted.

Results

Systemic dosing with an Hh agonist significantly upregulated Gli1 expression in the spinal cord (p < 0.005). After spinal contusion, animals treated with the Hh agonist had significantly more nestin-positive neural precursor cells around the rim of the lesion cavity than in vehicle-treated controls (means ± SDs, 46.9 ± 12.9 vs 20.9 ± 8.3 cells/hpf, respectively, p < 0.005). There was no significant difference in the area of white matter injury between the groups.

Conclusions

An intravenous Hh agonist at doses that upregulate spinal cord Gli1 transcription also increases the population of neural precursor cells after spinal cord injury in adult rats. These data support previous findings based on injections of Shh protein directly into the spinal cord.

Restricted access

Eric M. Horn, Michael Beaumont, Xiao Zheng Shu, Adrian Harvey, Glenn D. Prestwich, Kris M. Horn, Alan R. Gibson, Mark C. Preul, and Alyssa Panitch

Object

Therapies that use bioactive materials as replacement extracellular matrices may hold the potential to mitigate the inhibition of regeneration observed after central nervous system trauma. Hyaluronic acid (HA), a nonsulfated glycosaminoglycan ubiquitous in all tissues, was investigated as a potential neural tissue engineering matrix.

Methods

Chick dorsal root ganglia were cultured in 3D hydrogel matrices composed of cross-linked thiol-modified HA or fibrin. Samples were cultured and images were acquired at 48-, 60-, and 192-hour time points. Images of all samples were analyzed at 48 hours of incubation to quantify the extent of neurite growth. Cultures in cross-linked thiolated HA exhibited more than a 50% increase in neurite length compared with fibrin samples. Furthermore, cross-linked thiolated HA supported neurites for the entire duration of the culture period, whereas fibrin cultures exhibited collapsed and degenerating extensions beyond 60 hours.

Two concentrations of the thiolated HA (0.5 and 1%) were then placed at the site of a complete thoracic spinal cord transection in rats. The ability of the polymer to promote regeneration was tested using motor evoked potentials, retrograde axonal labeling, and behavioral assessments. There were no differences in any of the parameters between rats treated with the polymer and controls.

Conclusions

The use of a cross-linked HA scaffold promoted robust neurite outgrowth. Although there was no benefit from the polymer in a rodent spinal cord injury model, the findings in this study represent an early step in the development of semisynthetic extracellular matrice scaffolds for the treatment of neuronal injury.

Restricted access

L. Fernando Gonzalez, Neil R. Crawford, Robert H. Chamberlain, Luis E. Perez Garza, Mark C. Preul, Volker K. H. Sonntag, and Curtis A. Dickman

Object. The authors compared the biomechanical stability resulting from the use of a new technique for occipitoatlantal motion segment fixation with an established method and assessed the additional stability provided by combining the two techniques.

Methods. Specimens were loaded using nonconstraining pure moments while recording the three-dimensional angular movement at occiput (Oc)—C1 and C1–2. Specimens were tested intact and after destabilization and fixation as follows: 1) Oc—C1 transarticular screws plus C1–2 transarticular screws; 2) occipitocervical transarticular (OCTA) plate in which C1–2 transarticular screws attach to a loop from Oc to C-2; and (3) OCTA plate plus Oc—C1 transarticular screws.

Occipitoatlantal transarticular screws reduced motion to well within the normal range. The OCTA loop and transarticular screws allowed a very small neutral zone, elastic zone, and range of motion during lateral bending and axial rotation. The transarticular screws, however, were less effective than the OCTA loop in resisting flexion and extension.

Conclusions. Biomechanically, Oc—C1 transarticular screws performed well enough to be considered as an alternative for Oc—C1 fixation, especially when instability at C1–2 is minimal. Techniques for augmenting these screws posteriorly by using a wired bone graft buttress, as is currently undertaken with C1–2 transarticular screws, may be needed for optimal performance.