Browse

You are looking at 1 - 3 of 3 items for

  • All content x
  • By Author: Kuratani, John x
Clear All
Restricted access

Michael R. Levitt, Jeffrey G. Ojemann, and John Kuratani

The insular cortex is an uncommon epileptogenic location from which complex partial seizures may arise. Seizure activity in insular epilepsy may mimic temporal, parietal, or other cortical areas. Semiology, electroencephalography, and even surface electrocorticography recordings may falsely localize other cortical foci, leading to inaccurate diagnosis and treatment. The use of insular depth electrodes allows more precise localization of seizure foci. The authors describe the case of a young girl with seizures falsely localized to the cortex, with foci arising from the insula, as proven by depth electrode recordings. Resection of the insula yielded seizure control.

Free access

Sandra L. Poliachik, Andrew V. Poliakov, Laura A. Jansen, Sharon S. McDaniel, Carter D. Wray, John Kuratani, Russell P. Saneto, Jeffrey G. Ojemann, and Edward J. Novotny Jr

Object

Imaging-guided surgery (IGS) systems are widely used in neurosurgical practice. During epilepsy surgery, the authors routinely use IGS landmarks to localize intracranial electrodes and/or specific brain regions. The authors have developed a technique to coregister these landmarks with pre- and postoperative scans and the Montreal Neurological Institute (MNI) standard space brain MRI to allow 1) localization and identification of tissue anatomy; and 2) identification of Brodmann areas (BAs) of the tissue resected during epilepsy surgery. Tracking tissue in this fashion allows for better correlation of patient outcome to clinical factors, functional neuroimaging findings, and pathological characteristics and molecular studies of resected tissue.

Methods

Tissue samples were collected in 21 patients. Coordinates from intraoperative tissue localization were downloaded from the IGS system and transformed into patient space, as defined by preoperative high-resolution T1-weighted MRI volume. Tissue landmarks in patient space were then transformed into MNI standard space for identification of the BAs of the tissue samples.

Results

Anatomical locations of resected tissue were identified from the intraoperative resection landmarks. The BAs were identified for 17 of the 21 patients. The remaining patients had abnormal brain anatomy that could not be meaningfully coregistered with the MNI standard brain without causing extensive distortion.

Conclusions

This coregistration and landmark tracking technique allows localization of tissue that is resected from patients with epilepsy and identification of the BAs for each resected region. The ability to perform tissue localization allows investigators to relate preoperative, intraoperative, and postoperative functional and anatomical brain imaging to better understand patient outcomes, improve patient safety, and aid in research.