Browse

You are looking at 1 - 10 of 102 items for

  • Refine by Access: all x
  • By Author: Kulkarni, Abhaya V. x
Clear All
Restricted access

Steven J. Schiff, Abhaya V. Kulkarni, Edith Mbabazi-Kabachelor, John Mugamba, Peter Ssenyonga, Ruth Donnelly, Jody Levenbach, Vishal Monga, Mallory Peterson, Venkateswararao Cherukuri, and Benjamin C. Warf

OBJECTIVE

Hydrocephalus in infants, particularly that with a postinfectious etiology, is a major public health burden in Sub-Saharan Africa. The authors of this study aimed to determine whether surgical treatment of infant postinfectious hydrocephalus in Uganda results in sustained, long-term brain growth and improved cognitive outcome.

METHODS

The authors performed a trial at a single center in Mbale, Uganda, involving infants (age < 180 days old) with postinfectious hydrocephalus randomized to endoscopic third ventriculostomy plus choroid plexus cauterization (ETV+CPC; n = 51) or ventriculoperitoneal shunt (VPS; n = 49). After 2 years, they assessed developmental outcome with the Bayley Scales of Infant Development, Third Edition (BSID-III), and brain volume (raw and normalized for age and sex) with CT scans.

RESULTS

Eighty-nine infants were assessed for 2-year outcome. There were no significant differences between the two surgical treatment arms in terms of BSID-III cognitive score (p = 0.17) or brain volume (p = 0.36), so they were analyzed together. Raw brain volumes increased between baseline and 2 years (p < 0.001), but this increase occurred almost exclusively in the 1st year (p < 0.001). The fraction of patients with a normal brain volume increased from 15.2% at baseline to 50.0% at 1 year but then declined to 17.8% at 2 years. Substantial normalized brain volume loss was seen in 21.3% patients between baseline and year 2 and in 76.7% between years 1 and 2. The extent of brain growth in the 1st year was not associated with the extent of brain volume changes in the 2nd year. There were significant positive correlations between 2-year brain volume and all BSID-III scores and BSID-III changes from baseline.

CONCLUSIONS

In Sub-Saharan Africa, even after successful surgical treatment of infant postinfectious hydrocephalus, early posttreatment brain growth stagnates in the 2nd year. While the reasons for this finding are unclear, it further emphasizes the importance of primary infection prevention and mitigation strategies along with optimizing the child’s environment to maximize brain growth potential.

Open access

Mallory R. Peterson, Venkateswararao Cherukuri, Joseph N. Paulson, Paddy Ssentongo, Abhaya V. Kulkarni, Benjamin C. Warf, Vishal Monga, and Steven J. Schiff

OBJECTIVE

The study of brain size and growth has a long and contentious history, yet normal brain volume development has yet to be fully described. In particular, the normal brain growth and cerebrospinal fluid (CSF) accumulation relationship is critical to characterize because it is impacted in numerous conditions of early childhood in which brain growth and fluid accumulation are affected, such as infection, hemorrhage, hydrocephalus, and a broad range of congenital disorders. The authors of this study aim to describe normal brain volume growth, particularly in the setting of CSF accumulation.

METHODS

The authors analyzed 1067 magnetic resonance imaging scans from 505 healthy pediatric subjects from birth to age 18 years to quantify component and regional brain volumes. The volume trajectories were compared between the sexes and hemispheres using smoothing spline ANOVA. Population growth curves were developed using generalized additive models for location, scale, and shape.

RESULTS

Brain volume peaked at 10–12 years of age. Males exhibited larger age-adjusted total brain volumes than females, and body size normalization procedures did not eliminate this difference. The ratio of brain to CSF volume, however, revealed a universal age-dependent relationship independent of sex or body size.

CONCLUSIONS

These findings enable the application of normative growth curves in managing a broad range of childhood diseases in which cognitive development, brain growth, and fluid accumulation are interrelated.

Restricted access

Aaron M. Yengo-Kahn, John C. Wellons III, Todd C. Hankinson, Jason S. Hauptman, Eric M. Jackson, Hailey Jensen, Mark D. Krieger, Abhaya V. Kulkarni, David. D. Limbrick Jr., Patrick J. McDonald, Robert P. Naftel, Jonathan A. Pindrik, Ian F. Pollack, Ron Reeder, Jay Riva-Cambrin, Curtis J. Rozzelle, Mandeep S. Tamber, William E. Whitehead, John R. W. Kestle, and for the Hydrocephalus Clinical Research Network

OBJECTIVE

Treating Dandy-Walker syndrome–related hydrocephalus (DWSH) involves either a CSF shunt-based or endoscopic third ventriculostomy (ETV)–based procedure. However, comparative investigations are lacking. This study aimed to compare shunt-based and ETV-based treatment strategies utilizing archival data from the Hydrocephalus Clinical Research Network (HCRN) registry.

METHODS

A retrospective review of prospectively collected and maintained data on children with DWSH, available from the HCRN registry (14 sites, 2008–2018), was performed. The primary outcome was revision-free survival of the initial surgical intervention. The primary exposure was either shunt-based (i.e., cystoperitoneal shunt [CPS], ventriculoperitoneal shunt [VPS], and/or dual-compartment) or ETV-based (i.e., ETV alone or with choroid plexus cauterization [CPC]) initial surgical treatment. Primary analysis included multivariable Cox proportional hazards models.

RESULTS

Of 8400 HCRN patients, 151 (1.8%) had DWSH. Among these, the 102 patients who underwent shunt placement (79 VPSs, 16 CPSs, 3 other, and 4 multiple proximal catheter) were younger (6.6 vs 18.8 months, p < 0.001) and more frequently had 1 or more comorbidities (37.3% vs 14.3%, p = 0.005) than the 49 ETV-treated children (28 ETV-CPC). Fifty percent of the shunt-based and 51% of the ETV-based treatments failed. Notably, 100% (4/4) of the dual-compartment shunts failed. Adjusting for age, baseline ventricular size, and comorbidities, ETV-based treatment was not significantly associated with earlier failure compared with shunt-based treatment (HR for failure 1.32, 95% CI 0.77–2.26; p = 0.321). Complication rates were low: 4.9% and 6.1% (p = 0.715) for shunt- and ETV-based procedures, respectively. There was no difference in survival between ETV-CPC– and ETV-based treatment when adjusting for age (HR for failure 0.86, 95% CI 0.29–2.55, p = 0.783).

CONCLUSIONS

In this North American, multicenter, prospective database review, shunt-based and ETV-based primary treatment strategies of DWSH appear similarly durable. Pediatric neurosurgeons can reasonably consider ETV-based initial treatment given the similar durability and the low complication rate. However, given the observational nature of this study, the treating surgeon might need to consider subgroups that were too small for a separate analysis. Very young children with comorbidities were more commonly treated with shunts, and older children with fewer comorbidities were offered ETV-based treatment. Future studies may determine preoperative characteristics associated with ETV treatment success in this population.

Free access

Christopher M. Bonfield, Chevis N. Shannon, Ron W. Reeder, Samuel Browd, James Drake, Jason S. Hauptman, Abhaya V. Kulkarni, David D. Limbrick Jr., Patrick J. McDonald, Robert Naftel, Ian F. Pollack, Jay Riva-Cambrin, Curtis Rozzelle, Mandeep S. Tamber, William E. Whitehead, John R. W. Kestle, John C. Wellons III, and for the Hydrocephalus Clinical Research Network (HCRN)

OBJECTIVE

Hydrocephalus may be seen in patients with multisuture craniosynostosis and, less commonly, single-suture craniosynostosis. The optimal treatment for hydrocephalus in this population is unknown. In this study, the authors aimed to evaluate the success rate of ventriculoperitoneal shunt (VPS) treatment and endoscopic third ventriculostomy (ETV) both with and without choroid plexus cauterization (CPC) in patients with craniosynostosis.

METHODS

Utilizing the Hydrocephalus Clinical Research Network (HCRN) Core Data Project (Registry), the authors identified all patients who underwent treatment for hydrocephalus associated with craniosynostosis. Descriptive statistics, demographics, and surgical outcomes were evaluated.

RESULTS

In total, 42 patients underwent treatment for hydrocephalus associated with craniosynostosis. The median gestational age at birth was 39.0 weeks (IQR 38.0, 40.0); 55% were female and 60% were White. The median age at first craniosynostosis surgery was 0.6 years (IQR 0.3, 1.7), and at the first permanent hydrocephalus surgery it was 1.2 years (IQR 0.5, 2.5). Thirty-three patients (79%) had multiple different sutures fused, and 9 had a single suture: 3 unicoronal (7%), 3 sagittal (7%), 2 lambdoidal (5%), and 1 unknown (2%). Syndromes were identified in 38 patients (90%), with Crouzon syndrome being the most common (n = 16, 42%). Ten patients (28%) received permanent hydrocephalus surgery before the first craniosynostosis surgery. Twenty-eight patients (67%) underwent VPS treatment, with the remaining 14 (33%) undergoing ETV with or without CPC (ETV ± CPC). Within 12 months after initial hydrocephalus intervention, 14 patients (34%) required revision (8 VPS and 6 ETV ± CPC). At the most recent follow-up, 21 patients (50%) required a revision. The revision rate decreased as age increased. The overall infection rate was 5% (VPS 7%, 0% ETV ± CPC).

CONCLUSIONS

This is the largest prospective study reported on children with craniosynostosis and hydrocephalus. Hydrocephalus in children with craniosynostosis most commonly occurs in syndromic patients and multisuture fusion. It is treated at varying ages; however, most patients undergo surgery for craniosynostosis prior to hydrocephalus treatment. While VPS treatment is performed more frequently, VPS and ETV are both reasonable options, with decreasing revision rates with increasing age, for the treatment of hydrocephalus associated with craniosynostosis.

Restricted access

Adriana Fonseca, Palma Solano, Vijay Ramaswamy, Uri Tabori, Annie Huang, James M. Drake, Derek S. Tsang, Normand Laperriere, Ute Bartels, Abhaya V. Kulkarni, and Eric Bouffet

OBJECTIVE

There is no consensus on the optimal clinical management of ventriculomegaly and hydrocephalus in patients with diffuse intrinsic pontine glioma (DIPG). To date, the impact on survival in patients with ventriculomegaly and CSF diversion for hydrocephalus in this population remains to be elucidated. Herein, the authors describe their institutional experience.

METHODS

Patients diagnosed with DIPG and treated with up-front radiation therapy (RT) at The Hospital for Sick Children between 2000 and 2019 were identified. Images at diagnosis and progression were used to determine the frontal/occipital horn ratio (FOR) as a method to measure ventricular size. Patients with ventriculomegaly (FOR ≥ 0.36) were stratified according to the presence of symptoms and categorized as follows: 1) asymptomatic ventriculomegaly and 2) symptomatic hydrocephalus. For patients with ventriculomegaly who did not require CSF diversion, post-RT imaging was also evaluated to assess changes in the FOR after RT. Proportional hazards analyses were used to identify clinical and treatment factors correlated with survival. The Kaplan-Meier method was used to perform survival estimates, and the log-rank method was used to identify survival differences between groups.

RESULTS

Eighty-two patients met the inclusion criteria. At diagnosis, 28% (n = 23) of patients presented with ventriculomegaly, including 8 patients who had symptomatic hydrocephalus and underwent CSF diversion. A ventriculoperitoneal shunt was placed in the majority of patients (6/8). Fifteen asymptomatic patients were managed without CSF diversion. Six patients had resolution of ventriculomegaly after RT. Of 66 patients with imaging at the time of progression, 36 (55%) had ventriculomegaly, and 9 of them required CSF diversion. The presence of ventriculomegaly at diagnosis did not correlate with survival on univariate analysis. However, patients with symptomatic hydrocephalus at the time of progression who underwent CSF diversion had a survival advantage (p = 0.0340) when compared to patients with ventriculomegaly managed with conservative approaches.

CONCLUSIONS

Although ventriculomegaly can be present in up to 55% of patients with DIPG, the majority of patients present with asymptomatic ventriculomegaly and do not require surgical interventions. In some cases ventriculomegaly improved after medical management with steroids and RT. CSF diversion for hydrocephalus at the time of diagnosis does not impact survival. In contrast, our results suggest a survival advantage in patients who undergo CSF diversion for hydrocephalus at the time of progression, albeit that advantage is likely to be confounded by biological and individual patient factors. Further research in this area is needed to understand the best timing and type of interventions in this population.

Restricted access

Jason S. Hauptman, John Kestle, Jay Riva-Cambrin, Abhaya V. Kulkarni, Samuel R. Browd, Curtis J. Rozzelle, William E. Whitehead, Robert P. Naftel, Jonathan Pindrik, David D. Limbrick Jr., James Drake, John C. Wellons III, Mandeep S. Tamber, Chevis N. Shannon, Tamara D. Simon, Ian F. Pollack, Patrick J. McDonald, Mark D. Krieger, Jason Chu, Todd C. Hankinson, Eric M. Jackson, Jessica S. Alvey, Ron W. Reeder, Richard Holubkov, and for the Hydrocephalus Clinical Research Network

OBJECTIVE

The primary objective of this study was to use the prospective Hydrocephalus Clinical Research Network (HCRN) registry to determine clinical predictors of fast time to shunt failure (≤ 30 days from last revision) and ultrafast time to failure (≤ 7 days from last revision).

METHODS

Revisions (including those due to infection) to permanent shunt placements that occurred between April 2008 and November 2017 for patients whose entire shunt experience was recorded in the registry were analyzed. All registry data provided at the time of initial shunt placement and subsequent revision were reviewed. Key variables analyzed included etiology of hydrocephalus, age at time of initial shunt placement, presence of slit ventricles on imaging at revision, whether the ventricles were enlarged at the time of revision, and presence of prior fast failure events. Univariable and multivariable analyses were performed to find key predictors of fast and ultrafast failure events.

RESULTS

A cohort of 1030 patients with initial shunt insertions experienced a total of 1995 revisions. Of the 1978 revision events with complete records, 1216 (61.5%) shunts remained functional for more than 1 year, and 762 (38.5%) failed within 1 year of the procedure date. Of those that failed within 1 year, 423 (55.5%) failed slowly (31–365 days) and 339 (44.5%) failed fast (≤ 30 days). Of the fast failures, 131 (38.6%) were ultrafast (≤ 7 days). In the multivariable analysis specified a priori, etiology of hydrocephalus (p = 0.005) and previous failure history (p = 0.011) were independently associated with fast failure. Age at time of procedure (p = 0.042) and etiology of hydrocephalus (p = 0.004) were independently associated with ultrafast failure. These relationships in both a priori models were supported by the data-driven multivariable models as well.

CONCLUSIONS

Neither the presence of slit ventricle syndrome nor ventricular enlargement at the time of shunt failure appears to be a significant predictor of repeated, rapid shunt revisions. Age at the time of procedure, etiology of hydrocephalus, and the history of previous failure events seem to be important predictors of fast and ultrafast shunt failure. Further work is required to understand the mechanisms of these risk factors as well as mitigation strategies.

Restricted access

Mandeep S. Tamber, John R. W. Kestle, Ron W. Reeder, Richard Holubkov, Jessica Alvey, Samuel R. Browd, James M. Drake, Abhaya V. Kulkarni, David D. Limbrick Jr., Patrick J. McDonald, Curtis J. Rozzelle, Tamara D. Simon, Robert Naftel, Chevis N. Shannon, John C. Wellons III, William E. Whitehead, Jay Riva-Cambrin, and for the Hydrocephalus Clinical Research Network

OBJECTIVE

Analysis of temporal trends in patient populations and procedure types may provide important information regarding the evolution of hydrocephalus treatment. The purpose of this study was to use the Hydrocephalus Clinical Research Network’s Core Data Project to identify meaningful trends in patient characteristics and the surgical management of pediatric hydrocephalus over a 9-year period.

METHODS

The Core Data Project prospectively collected patient and procedural data on the study cohort from 9 centers between 2008 and 2016. Logistic and Poisson regression were used to test for significant temporal trends in patient characteristics and new and revision hydrocephalus procedures.

RESULTS

The authors analyzed 10,149 procedures in 5541 patients. New procedures for hydrocephalus (shunt or endoscopic third ventriculostomy [ETV]) decreased by 1.5%/year (95% CI −3.1%, +0.1%). During the study period, new shunt insertions decreased by 6.5%/year (95% CI −8.3%, −4.6%), whereas new ETV procedures increased by 12.5%/year (95% CI 9.3%, 15.7%). Revision procedures for hydrocephalus (shunt or ETV) decreased by 4.2%/year (95% CI −5.2%, −3.1%), driven largely by a decrease of 5.7%/year in shunt revisions (95% CI −6.8%, −4.6%). Concomitant with the observed increase in new ETV procedures was an increase in ETV revisions (13.4%/year, 95% CI 9.6%, 17.2%). Because revisions decreased at a faster rate than new procedures, the Revision Quotient (ratio of revisions to new procedures) for the Network decreased significantly over the study period (p = 0.0363). No temporal change was observed in the age or etiology characteristics of the cohort, although the proportion of patients with one or more complex chronic conditions significantly increased over time (p = 0.0007).

CONCLUSIONS

Over a relatively short period, important changes in hydrocephalus care have been observed. A significant temporal decrease in revision procedures amid the backdrop of a more modest change in new procedures appears to be the most notable finding and may be indicative of an improvement in the quality of surgical care for pediatric hydrocephalus. Further studies will be directed at elucidation of the possible drivers of the observed trends.

Restricted access

Mandeep S. Tamber, John R. W. Kestle, Ron W. Reeder, Richard Holubkov, Jessica Alvey, Samuel R. Browd, James M. Drake, Abhaya V. Kulkarni, David D. Limbrick Jr., Patrick J. McDonald, Curtis J. Rozzelle, Tamara D. Simon, Robert Naftel, Chevis N. Shannon, John C. Wellons III, William E. Whitehead, Jay Riva-Cambrin, and for the Hydrocephalus Clinical Research Network

OBJECTIVE

Analysis of temporal trends in patient populations and procedure types may provide important information regarding the evolution of hydrocephalus treatment. The purpose of this study was to use the Hydrocephalus Clinical Research Network’s Core Data Project to identify meaningful trends in patient characteristics and the surgical management of pediatric hydrocephalus over a 9-year period.

METHODS

The Core Data Project prospectively collected patient and procedural data on the study cohort from 9 centers between 2008 and 2016. Logistic and Poisson regression were used to test for significant temporal trends in patient characteristics and new and revision hydrocephalus procedures.

RESULTS

The authors analyzed 10,149 procedures in 5541 patients. New procedures for hydrocephalus (shunt or endoscopic third ventriculostomy [ETV]) decreased by 1.5%/year (95% CI −3.1%, +0.1%). During the study period, new shunt insertions decreased by 6.5%/year (95% CI −8.3%, −4.6%), whereas new ETV procedures increased by 12.5%/year (95% CI 9.3%, 15.7%). Revision procedures for hydrocephalus (shunt or ETV) decreased by 4.2%/year (95% CI −5.2%, −3.1%), driven largely by a decrease of 5.7%/year in shunt revisions (95% CI −6.8%, −4.6%). Concomitant with the observed increase in new ETV procedures was an increase in ETV revisions (13.4%/year, 95% CI 9.6%, 17.2%). Because revisions decreased at a faster rate than new procedures, the Revision Quotient (ratio of revisions to new procedures) for the Network decreased significantly over the study period (p = 0.0363). No temporal change was observed in the age or etiology characteristics of the cohort, although the proportion of patients with one or more complex chronic conditions significantly increased over time (p = 0.0007).

CONCLUSIONS

Over a relatively short period, important changes in hydrocephalus care have been observed. A significant temporal decrease in revision procedures amid the backdrop of a more modest change in new procedures appears to be the most notable finding and may be indicative of an improvement in the quality of surgical care for pediatric hydrocephalus. Further studies will be directed at elucidation of the possible drivers of the observed trends.

Free access

Jonathan Pindrik, Jay Riva-Cambrin, Abhaya V. Kulkarni, Jessica S. Alvey, Ron W. Reeder, Ian F. Pollack, John C. Wellons III, Eric M. Jackson, Curtis J. Rozzelle, William E. Whitehead, David D. Limbrick Jr., Robert P. Naftel, Chevis Shannon, Patrick J. McDonald, Mandeep S. Tamber, Todd C. Hankinson, Jason S. Hauptman, Tamara D. Simon, Mark D. Krieger, Richard Holubkov, John R. W. Kestle, and for the Hydrocephalus Clinical Research Network

OBJECTIVE

Few studies have addressed surgical resource utilization—surgical revisions and associated hospital admission days—following shunt insertion or endoscopic third ventriculostomy (ETV) with or without choroid plexus cauterization (CPC) for CSF diversion in hydrocephalus. Study members of the Hydrocephalus Clinical Research Network (HCRN) investigated differences in surgical resource utilization between CSF diversion strategies in hydrocephalus in infants.

METHODS

Patients up to corrected age 24 months undergoing initial definitive treatment of hydrocephalus were reviewed from the prospectively maintained HCRN Core Data Project (Hydrocephalus Registry). Postoperative courses (at 1, 3, and 5 years) were studied for hydrocephalus-related surgeries (primary outcome) and hospital admission days related to surgical revision (secondary outcome). Data were summarized using descriptive statistics and compared using negative binomial regression, controlling for age, hydrocephalus etiology, and HCRN center. The study population was organized into 3 groups (ETV alone, ETV with CPC, and CSF shunt insertion) during the 1st postoperative year and 2 groups (ETV alone and CSF shunt insertion) during subsequent years due to limited long-term follow-up data.

RESULTS

Among 1090 patients, the majority underwent CSF shunt insertion (CSF shunt, 83.5%; ETV with CPC, 10.0%; and ETV alone, 6.5%). Patients undergoing ETV with CPC had a higher mean number of revision surgeries (1.2 ± 1.6) than those undergoing ETV alone (0.6 ± 0.8) or CSF shunt insertion (0.7 ± 1.3) over the 1st year after surgery (p = 0.005). At long-term follow-up, patients undergoing ETV alone experienced a nonsignificant lower mean number of revision surgeries (0.7 ± 0.9 at 3 years and 0.8 ± 1.3 at 5 years) than those undergoing CSF shunt insertion (1.1 ± 1.9 at 3 years and 1.4 ± 2.6 at 5 years) and exhibited a lower mean number of hospital admission days related to revision surgery (3.8 ± 10.3 vs 9.9 ± 27.0, p = 0.042).

CONCLUSIONS

Among initial treatment strategies for hydrocephalus, ETV with CPC yielded a higher surgical revision rate within 1 year after surgery. Patients undergoing ETV alone exhibited a nonsignificant lower mean number of surgical revisions than CSF shunt insertion at 3 and 5 years postoperatively. Additionally, the ETV-alone cohort demonstrated significantly fewer hospital admission days related to surgical management of hydrocephalus within 3 years after surgery. These findings suggest a time-dependent benefit of ETV over CSF shunt insertion regarding surgical resource utilization.

Free access

Han Yan, Nebras M. Warsi, Abhaya V. Kulkarni, James M. Drake, and George M. Ibrahim