Browse

You are looking at 1 - 10 of 99 items for

  • All content x
  • By Author: Kestle, John R. W. x
Clear All
Free access

Christopher M. Bonfield, Chevis N. Shannon, Ron W. Reeder, Samuel Browd, James Drake, Jason S. Hauptman, Abhaya V. Kulkarni, David D. Limbrick Jr., Patrick J. McDonald, Robert Naftel, Ian F. Pollack, Jay Riva-Cambrin, Curtis Rozzelle, Mandeep S. Tamber, William E. Whitehead, John R. W. Kestle, John C. Wellons III, and for the Hydrocephalus Clinical Research Network (HCRN)

OBJECTIVE

Hydrocephalus may be seen in patients with multisuture craniosynostosis and, less commonly, single-suture craniosynostosis. The optimal treatment for hydrocephalus in this population is unknown. In this study, the authors aimed to evaluate the success rate of ventriculoperitoneal shunt (VPS) treatment and endoscopic third ventriculostomy (ETV) both with and without choroid plexus cauterization (CPC) in patients with craniosynostosis.

METHODS

Utilizing the Hydrocephalus Clinical Research Network (HCRN) Core Data Project (Registry), the authors identified all patients who underwent treatment for hydrocephalus associated with craniosynostosis. Descriptive statistics, demographics, and surgical outcomes were evaluated.

RESULTS

In total, 42 patients underwent treatment for hydrocephalus associated with craniosynostosis. The median gestational age at birth was 39.0 weeks (IQR 38.0, 40.0); 55% were female and 60% were White. The median age at first craniosynostosis surgery was 0.6 years (IQR 0.3, 1.7), and at the first permanent hydrocephalus surgery it was 1.2 years (IQR 0.5, 2.5). Thirty-three patients (79%) had multiple different sutures fused, and 9 had a single suture: 3 unicoronal (7%), 3 sagittal (7%), 2 lambdoidal (5%), and 1 unknown (2%). Syndromes were identified in 38 patients (90%), with Crouzon syndrome being the most common (n = 16, 42%). Ten patients (28%) received permanent hydrocephalus surgery before the first craniosynostosis surgery. Twenty-eight patients (67%) underwent VPS treatment, with the remaining 14 (33%) undergoing ETV with or without CPC (ETV ± CPC). Within 12 months after initial hydrocephalus intervention, 14 patients (34%) required revision (8 VPS and 6 ETV ± CPC). At the most recent follow-up, 21 patients (50%) required a revision. The revision rate decreased as age increased. The overall infection rate was 5% (VPS 7%, 0% ETV ± CPC).

CONCLUSIONS

This is the largest prospective study reported on children with craniosynostosis and hydrocephalus. Hydrocephalus in children with craniosynostosis most commonly occurs in syndromic patients and multisuture fusion. It is treated at varying ages; however, most patients undergo surgery for craniosynostosis prior to hydrocephalus treatment. While VPS treatment is performed more frequently, VPS and ETV are both reasonable options, with decreasing revision rates with increasing age, for the treatment of hydrocephalus associated with craniosynostosis.

Free access

Concezio Di Rocco, John R. W. Kestle, Richard Hayward, and Jesse A. Taylor

Free access

Cordell M. Baker, Vijay M. Ravindra, Barbu Gociman, Faizi A. Siddiqi, Jesse A. Goldstein, Matthew D. Smyth, Amy Lee, Richard C. E. Anderson, Kamlesh B. Patel, Craig Birgfeld, Ian F. Pollack, Thomas Imahiyerobo, John R. W. Kestle, and for the Synostosis Research Group

OBJECTIVE

Sagittal synostosis is the most common form of isolated craniosynostosis. Although some centers have reported extensive experience with this condition, most reports have focused on a single center. In 2017, the Synostosis Research Group (SynRG), a multicenter collaborative network, was formed to study craniosynostosis. Here, the authors report their early experience with treating sagittal synostosis in the network. The goals were to describe practice patterns, identify variations, and generate hypotheses for future research.

METHODS

All patients with a clinical diagnosis of isolated sagittal synostosis who presented to a SynRG center between March 1, 2017, and October 31, 2019, were included. Follow-up information through October 31, 2020, was included. Data extracted from the prospectively maintained SynRG registry included baseline parameters, surgical adjuncts and techniques, complications prior to discharge, and indications for reoperation. Data analysis was descriptive, using frequencies for categorical variables and means and medians for continuous variables.

RESULTS

Two hundred five patients had treatment for sagittal synostosis at 5 different sites. One hundred twenty-six patients were treated with strip craniectomy and 79 patients with total cranial vault remodeling. The most common strip craniectomy was wide craniectomy with parietal wedge osteotomies (44%), and the most common cranial vault remodeling procedure was total vault remodeling without forehead remodeling (63%). Preoperative mean cephalic indices (CIs) were similar between treatment groups: 0.69 for strip craniectomy and 0.68 for cranial vault remodeling. Thirteen percent of patients had other health problems. In the cranial vault cohort, 81% of patients who received tranexamic acid required a transfusion compared with 94% of patients who did not receive tranexamic acid. The rates of complication were low in all treatment groups. Five patients (2%) had an unintended reoperation. The mean change in CI was 0.09 for strip craniectomy and 0.06 for cranial vault remodeling; wide craniectomy resulted in a greater change in CI in the strip craniectomy group.

CONCLUSIONS

The baseline severity of scaphocephaly was similar across procedures and sites. Treatment methods varied, but cranial vault remodeling and strip craniectomy both resulted in satisfactory postoperative CIs. Use of tranexamic acid may reduce the need for transfusion in cranial vault cases. The wide craniectomy technique for strip craniectomy seemed to be associated with change in CI. Both findings seem amenable to testing in a randomized controlled trial.

Restricted access

Mandeep S. Tamber, John R. W. Kestle, Ron W. Reeder, Richard Holubkov, Jessica Alvey, Samuel R. Browd, James M. Drake, Abhaya V. Kulkarni, David D. Limbrick Jr., Patrick J. McDonald, Curtis J. Rozzelle, Tamara D. Simon, Robert Naftel, Chevis N. Shannon, John C. Wellons III, William E. Whitehead, Jay Riva-Cambrin, and for the Hydrocephalus Clinical Research Network

OBJECTIVE

Analysis of temporal trends in patient populations and procedure types may provide important information regarding the evolution of hydrocephalus treatment. The purpose of this study was to use the Hydrocephalus Clinical Research Network’s Core Data Project to identify meaningful trends in patient characteristics and the surgical management of pediatric hydrocephalus over a 9-year period.

METHODS

The Core Data Project prospectively collected patient and procedural data on the study cohort from 9 centers between 2008 and 2016. Logistic and Poisson regression were used to test for significant temporal trends in patient characteristics and new and revision hydrocephalus procedures.

RESULTS

The authors analyzed 10,149 procedures in 5541 patients. New procedures for hydrocephalus (shunt or endoscopic third ventriculostomy [ETV]) decreased by 1.5%/year (95% CI −3.1%, +0.1%). During the study period, new shunt insertions decreased by 6.5%/year (95% CI −8.3%, −4.6%), whereas new ETV procedures increased by 12.5%/year (95% CI 9.3%, 15.7%). Revision procedures for hydrocephalus (shunt or ETV) decreased by 4.2%/year (95% CI −5.2%, −3.1%), driven largely by a decrease of 5.7%/year in shunt revisions (95% CI −6.8%, −4.6%). Concomitant with the observed increase in new ETV procedures was an increase in ETV revisions (13.4%/year, 95% CI 9.6%, 17.2%). Because revisions decreased at a faster rate than new procedures, the Revision Quotient (ratio of revisions to new procedures) for the Network decreased significantly over the study period (p = 0.0363). No temporal change was observed in the age or etiology characteristics of the cohort, although the proportion of patients with one or more complex chronic conditions significantly increased over time (p = 0.0007).

CONCLUSIONS

Over a relatively short period, important changes in hydrocephalus care have been observed. A significant temporal decrease in revision procedures amid the backdrop of a more modest change in new procedures appears to be the most notable finding and may be indicative of an improvement in the quality of surgical care for pediatric hydrocephalus. Further studies will be directed at elucidation of the possible drivers of the observed trends.

Restricted access

Mandeep S. Tamber, John R. W. Kestle, Ron W. Reeder, Richard Holubkov, Jessica Alvey, Samuel R. Browd, James M. Drake, Abhaya V. Kulkarni, David D. Limbrick Jr., Patrick J. McDonald, Curtis J. Rozzelle, Tamara D. Simon, Robert Naftel, Chevis N. Shannon, John C. Wellons III, William E. Whitehead, Jay Riva-Cambrin, and for the Hydrocephalus Clinical Research Network

OBJECTIVE

Analysis of temporal trends in patient populations and procedure types may provide important information regarding the evolution of hydrocephalus treatment. The purpose of this study was to use the Hydrocephalus Clinical Research Network’s Core Data Project to identify meaningful trends in patient characteristics and the surgical management of pediatric hydrocephalus over a 9-year period.

METHODS

The Core Data Project prospectively collected patient and procedural data on the study cohort from 9 centers between 2008 and 2016. Logistic and Poisson regression were used to test for significant temporal trends in patient characteristics and new and revision hydrocephalus procedures.

RESULTS

The authors analyzed 10,149 procedures in 5541 patients. New procedures for hydrocephalus (shunt or endoscopic third ventriculostomy [ETV]) decreased by 1.5%/year (95% CI −3.1%, +0.1%). During the study period, new shunt insertions decreased by 6.5%/year (95% CI −8.3%, −4.6%), whereas new ETV procedures increased by 12.5%/year (95% CI 9.3%, 15.7%). Revision procedures for hydrocephalus (shunt or ETV) decreased by 4.2%/year (95% CI −5.2%, −3.1%), driven largely by a decrease of 5.7%/year in shunt revisions (95% CI −6.8%, −4.6%). Concomitant with the observed increase in new ETV procedures was an increase in ETV revisions (13.4%/year, 95% CI 9.6%, 17.2%). Because revisions decreased at a faster rate than new procedures, the Revision Quotient (ratio of revisions to new procedures) for the Network decreased significantly over the study period (p = 0.0363). No temporal change was observed in the age or etiology characteristics of the cohort, although the proportion of patients with one or more complex chronic conditions significantly increased over time (p = 0.0007).

CONCLUSIONS

Over a relatively short period, important changes in hydrocephalus care have been observed. A significant temporal decrease in revision procedures amid the backdrop of a more modest change in new procedures appears to be the most notable finding and may be indicative of an improvement in the quality of surgical care for pediatric hydrocephalus. Further studies will be directed at elucidation of the possible drivers of the observed trends.

Free access

Jennifer L. Quon, Michelle Han, Lily H. Kim, Mary Ellen Koran, Leo C. Chen, Edward H. Lee, Jason Wright, Vijay Ramaswamy, Robert M. Lober, Michael D. Taylor, Gerald A. Grant, Samuel H. Cheshier, John R. W. Kestle, Michael S. B. Edwards, and Kristen W. Yeom

OBJECTIVE

Imaging evaluation of the cerebral ventricles is important for clinical decision-making in pediatric hydrocephalus. Although quantitative measurements of ventricular size, over time, can facilitate objective comparison, automated tools for calculating ventricular volume are not structured for clinical use. The authors aimed to develop a fully automated deep learning (DL) model for pediatric cerebral ventricle segmentation and volume calculation for widespread clinical implementation across multiple hospitals.

METHODS

The study cohort consisted of 200 children with obstructive hydrocephalus from four pediatric hospitals, along with 199 controls. Manual ventricle segmentation and volume calculation values served as “ground truth” data. An encoder-decoder convolutional neural network architecture, in which T2-weighted MR images were used as input, automatically delineated the ventricles and output volumetric measurements. On a held-out test set, segmentation accuracy was assessed using the Dice similarity coefficient (0 to 1) and volume calculation was assessed using linear regression. Model generalizability was evaluated on an external MRI data set from a fifth hospital. The DL model performance was compared against FreeSurfer research segmentation software.

RESULTS

Model segmentation performed with an overall Dice score of 0.901 (0.946 in hydrocephalus, 0.856 in controls). The model generalized to external MR images from a fifth pediatric hospital with a Dice score of 0.926. The model was more accurate than FreeSurfer, with faster operating times (1.48 seconds per scan).

CONCLUSIONS

The authors present a DL model for automatic ventricle segmentation and volume calculation that is more accurate and rapid than currently available methods. With near-immediate volumetric output and reliable performance across institutional scanner types, this model can be adapted to the real-time clinical evaluation of hydrocephalus and improve clinician workflow.

Free access

Jonathan Pindrik, Jay Riva-Cambrin, Abhaya V. Kulkarni, Jessica S. Alvey, Ron W. Reeder, Ian F. Pollack, John C. Wellons III, Eric M. Jackson, Curtis J. Rozzelle, William E. Whitehead, David D. Limbrick Jr., Robert P. Naftel, Chevis Shannon, Patrick J. McDonald, Mandeep S. Tamber, Todd C. Hankinson, Jason S. Hauptman, Tamara D. Simon, Mark D. Krieger, Richard Holubkov, John R. W. Kestle, and for the Hydrocephalus Clinical Research Network

OBJECTIVE

Few studies have addressed surgical resource utilization—surgical revisions and associated hospital admission days—following shunt insertion or endoscopic third ventriculostomy (ETV) with or without choroid plexus cauterization (CPC) for CSF diversion in hydrocephalus. Study members of the Hydrocephalus Clinical Research Network (HCRN) investigated differences in surgical resource utilization between CSF diversion strategies in hydrocephalus in infants.

METHODS

Patients up to corrected age 24 months undergoing initial definitive treatment of hydrocephalus were reviewed from the prospectively maintained HCRN Core Data Project (Hydrocephalus Registry). Postoperative courses (at 1, 3, and 5 years) were studied for hydrocephalus-related surgeries (primary outcome) and hospital admission days related to surgical revision (secondary outcome). Data were summarized using descriptive statistics and compared using negative binomial regression, controlling for age, hydrocephalus etiology, and HCRN center. The study population was organized into 3 groups (ETV alone, ETV with CPC, and CSF shunt insertion) during the 1st postoperative year and 2 groups (ETV alone and CSF shunt insertion) during subsequent years due to limited long-term follow-up data.

RESULTS

Among 1090 patients, the majority underwent CSF shunt insertion (CSF shunt, 83.5%; ETV with CPC, 10.0%; and ETV alone, 6.5%). Patients undergoing ETV with CPC had a higher mean number of revision surgeries (1.2 ± 1.6) than those undergoing ETV alone (0.6 ± 0.8) or CSF shunt insertion (0.7 ± 1.3) over the 1st year after surgery (p = 0.005). At long-term follow-up, patients undergoing ETV alone experienced a nonsignificant lower mean number of revision surgeries (0.7 ± 0.9 at 3 years and 0.8 ± 1.3 at 5 years) than those undergoing CSF shunt insertion (1.1 ± 1.9 at 3 years and 1.4 ± 2.6 at 5 years) and exhibited a lower mean number of hospital admission days related to revision surgery (3.8 ± 10.3 vs 9.9 ± 27.0, p = 0.042).

CONCLUSIONS

Among initial treatment strategies for hydrocephalus, ETV with CPC yielded a higher surgical revision rate within 1 year after surgery. Patients undergoing ETV alone exhibited a nonsignificant lower mean number of surgical revisions than CSF shunt insertion at 3 and 5 years postoperatively. Additionally, the ETV-alone cohort demonstrated significantly fewer hospital admission days related to surgical management of hydrocephalus within 3 years after surgery. These findings suggest a time-dependent benefit of ETV over CSF shunt insertion regarding surgical resource utilization.

Free access

Brandon A. Sherrod, Rajiv R. Iyer, and John R. W. Kestle

OBJECTIVE

Surgical options for managing hydrocephalus secondary to CNS tumors have traditionally included ventriculoperitoneal shunting (VPS) when tumor resection or medical management alone are ineffective. Endoscopic third ventriculostomy (ETV) has emerged as an attractive treatment strategy for tumor-associated hydrocephalus because it offers a lower risk of infection and hardware-related complications; however, relatively little has been written on the topic of ETV specifically for the treatment of tumor-associated hydrocephalus. Here, the authors reviewed the existing literature on the use of ETV in the treatment of tumor-associated hydrocephalus, focusing on the frequency of ETV use and the failure rates in patients with hydrocephalus secondary to CNS tumor.

METHODS

The authors queried PubMed for the following terms: “endoscopic third ventriculostomy,” “tumor,” and “pediatric.” Papers with only adult populations, case reports, and papers published before the year 2000 were excluded. The authors analyzed the etiology of hydrocephalus and failure rates after ETV, and they compared failure rates of ETV with those of VPS where reported.

RESULTS

Thirty-two studies with data on pediatric patients undergoing ETV for tumor-related hydrocephalus were analyzed. Tumors, particularly in the posterior fossa, were reported as the etiology of hydrocephalus in 38.6% of all ETVs performed (984 of 2547 ETVs, range 29%–55%). The ETV failure rate in tumor-related hydrocephalus ranged from 6% to 38.6%, and in the largest studies analyzed (> 100 patients), the ETV failure rate ranged from 10% to 38.6%. The pooled ETV failure rate was 18.3% (199 failures after 1087 procedures). The mean or median follow-up for ETV failure assessment ranged from 6 months to 8 years in these studies. Only 5 studies directly compared ETV with VPS for tumor-associated hydrocephalus, and they reported mixed results in regard to failure rate and time to failure. Overall failure rates appear similar for ETV and VPS over time, and the risk of infection appears to be lower in those patients undergoing ETV. The literature is mixed regarding the need for routine ETV before resection for posterior fossa tumors with associated hydrocephalus.

CONCLUSIONS

Treatment of tumor-related hydrocephalus with ETV is common and is warranted in select pediatric patient populations. Failure rates are overall similar to those of VPS for tumor-associated hydrocephalus.

Free access

Joyce Koueik, Carolina Sandoval-Garcia, John R. W. Kestle, Brandon G. Rocque, David M. Frim, Gerald A. Grant, Robert F. Keating, Carrie R. Muh, W. Jerry Oakes, Ian F. Pollack, Nathan R. Selden, R. Shane Tubbs, Gerald F. Tuite, Benjamin Warf, Victoria Rajamanickam, Aimee Teo Broman, Victor Haughton, Susan Rebsamen, Timothy M. George, and Bermans J. Iskandar

OBJECTIVE

Despite significant advances in diagnostic and surgical techniques, the surgical management of Chiari malformation type I (CM-I) with associated syringomyelia remains controversial, and the type of surgery performed is surgeon dependent. This study’s goal was to determine the feasibility of a prospective, multicenter, cohort study for CM-I/syringomyelia patients and to provide pilot data that compare posterior fossa decompression and duraplasty (PFDD) with and without tonsillar reduction.

METHODS

Participating centers prospectively enrolled children suffering from both CM-I and syringomyelia who were scheduled to undergo surgical decompression. Clinical data were entered into a database preoperatively and at 1–2 weeks, 3–6 months, and 1 year postoperatively. MR images were evaluated by 3 independent, blinded teams of neurosurgeons and neuroradiologists. The primary endpoint was improvement or resolution of the syrinx.

RESULTS

Eight clinical sites were chosen based on the results of a published questionnaire intended to remove geographic and surgeon bias. Data from 68 patients were analyzed after exclusions, and complete clinical and imaging records were obtained for 55 and 58 individuals, respectively. There was strong agreement among the 3 radiology teams, and there was no difference in patient demographics among sites, surgeons, or surgery types. Tonsillar reduction was not associated with > 50% syrinx improvement (RR = 1.22, p = 0.39) or any syrinx improvement (RR = 1.00, p = 0.99). There were no surgical complications.

CONCLUSIONS

This study demonstrated the feasibility of a prospective, multicenter surgical trial in CM-I/syringomyelia and provides pilot data indicating no discernible difference in 1-year outcomes between PFDD with and without tonsillar reduction, with power calculations for larger future studies. In addition, the study revealed important technical factors to consider when setting up future trials. The long-term sequelae of tonsillar reduction have not been addressed and would be an important consideration in future investigations.

Free access

Jay Riva-Cambrin, John R. W. Kestle, Curtis J. Rozzelle, Robert P. Naftel, Jessica S. Alvey, Ron W. Reeder, Richard Holubkov, Samuel R. Browd, D. Douglas Cochrane, David D. Limbrick Jr., Chevis N. Shannon, Tamara D. Simon, Mandeep S. Tamber, John C. Wellons III, William E. Whitehead, Abhaya V. Kulkarni, and for the Hydrocephalus Clinical Research Network

OBJECTIVE

Endoscopic third ventriculostomy combined with choroid plexus cauterization (ETV+CPC) has been adopted by many pediatric neurosurgeons as an alternative to placing shunts in infants with hydrocephalus. However, reported success rates have been highly variable, which may be secondary to patient selection, operative technique, and/or surgeon training. The objective of this prospective multicenter cohort study was to identify independent patient selection, operative technique, or surgical training predictors of ETV+CPC success in infants.

METHODS

This was a prospective cohort study nested within the Hydrocephalus Clinical Research Network’s (HCRN) Core Data Project (registry). All infants under the age of 2 years who underwent a first ETV+CPC between June 2006 and March 2015 from 8 HCRN centers were included. Each patient had a minimum of 6 months of follow-up unless censored by an ETV+CPC failure. Patient and operative risk factors of failure were examined, as well as formal ETV+CPC training, which was defined as traveling to and working with the experienced surgeons at CURE Children’s Hospital of Uganda. ETV+CPC failure was defined as the need for repeat ETV, shunting, or death.

RESULTS

The study contained 191 patients with a primary ETV+CPC conducted by 17 pediatric neurosurgeons within the HCRN. Infants under 6 months corrected age at the time of ETV+CPC represented 79% of the cohort. Myelomeningocele (26%), intraventricular hemorrhage associated with prematurity (24%), and aqueductal stenosis (17%) were the most common etiologies. A total of 115 (60%) of the ETV+CPCs were conducted by surgeons after formal training. Overall, ETV+CPC was successful in 48%, 46%, and 45% of infants at 6 months, 1 year, and 18 months, respectively. Young age (< 1 month) (adjusted hazard ratio [aHR] 1.9, 95% CI 1.0–3.6) and an etiology of post–intraventricular hemorrhage secondary to prematurity (aHR 2.0, 95% CI 1.1–3.6) were the only two independent predictors of ETV+CPC failure. Specific subgroups of ages within etiology categories were identified as having higher ETV+CPC success rates. Although training led to more frequent use of the flexible scope (p < 0.001) and higher rates of complete (> 90%) CPC (p < 0.001), training itself was not independently associated (aHR 1.1, 95% CI 0.7–1.8; p = 0.63) with ETV+CPC success.

CONCLUSIONS

This is the largest prospective multicenter North American study to date examining ETV+CPC. Formal ETV+CPC training was not found to be associated with improved procedure outcomes. Specific subgroups of ages within specific hydrocephalus etiologies were identified that may preferentially benefit from ETV+CPC.