Browse

You are looking at 1 - 10 of 136 items for

  • All content x
  • By Author: Jea, Andrew x
Clear All
Restricted access

Nikita G. Alexiades, Belinda Shao, Bruno P. Braga, Christopher M. Bonfield, Douglas L. Brockmeyer, Samuel R. Browd, Michael DiLuna, Mari L. Groves, Todd C. Hankinson, Andrew Jea, Jeffrey R. Leonard, Sean M. Lew, David D. Limbrick Jr., Francesco T. Mangano, Jonathan Martin, Joshua Pahys, Alexander Powers, Mark R. Proctor, Luis Rodriguez, Curtis Rozzelle, Phillip B. Storm, and Richard C. E. Anderson

OBJECTIVE

Cervical traction in pediatric patients is an uncommon but invaluable technique in the management of cervical trauma and deformity. Despite its utility, little empirical evidence exists to guide its implementation, with most practitioners employing custom or modified adult protocols. Expert-based best practices may improve the care of children undergoing cervical traction. In this study, the authors aimed to build consensus and establish best practices for the use of pediatric cervical traction in order to enhance its utilization, safety, and efficacy.

METHODS

A modified Delphi method was employed to try to identify areas of consensus regarding the utilization and implementation of pediatric cervical spine traction. A literature review of pediatric cervical traction was distributed electronically along with a survey of current practices to a group of 20 board-certified pediatric neurosurgeons and orthopedic surgeons with expertise in the pediatric cervical spine. Sixty statements were then formulated and distributed to the group. The results of the second survey were discussed during an in-person meeting leading to further consensus. Consensus was defined as ≥ 80% agreement on a 4-point Likert scale (strongly agree, agree, disagree, strongly disagree).

RESULTS

After the initial round, consensus was achieved with 40 statements regarding the following topics: goals, indications, and contraindications of traction (12), pretraction imaging (6), practical application and initiation of various traction techniques (8), protocols in trauma and deformity patients (8), and management of traction-related complications (6). Following the second round, an additional 9 statements reached consensus related to goals/indications/contraindications of traction (4), related to initiation of traction (4), and related to complication management (1). All participants were willing to incorporate the consensus statements into their practice.

CONCLUSIONS

In an attempt to improve and standardize the use of cervical traction in pediatric patients, the authors have identified 49 best-practice recommendations, which were generated by reaching consensus among a multidisciplinary group of pediatric spine experts using a modified Delphi technique. Further study is required to determine if implementation of these practices can lead to reduced complications and improved outcomes for children.

Free access

Jessica Berns, Blake Priddy, Ahmed Belal, R. Dianne Seibold, Kristin Zieles, and Andrew Jea

OBJECTIVE

CSF shunts are the most common procedures performed in the pediatric neurosurgical population. Despite attempts in multiple studies, a superior shunt valve has never been shown. Because of this, the authors aim was to examine the impact of shunt valve standardization at their institution to determine if there is a difference in surgical cost, operative time, or short-term postoperative shunt failure.

METHODS

A retrospective analysis at the authors’ institution was performed for all new CSF diversion shunts, as well as shunt revisions requiring a new valve, or a new valve and at least a new proximal or distal catheter over a 1-year period (January 1, 2016, to December 31, 2016). After a period of transition, neurosurgeons were encouraged to use only one type of fixed-differential-pressure valve and one type of programmable valve when performing shunt surgeries. These patients who underwent “standardized” shunt surgery over a 1-year period (January 1, 2018, to December 31, 2018) were then compared to patients in the prestandardization epoch. All patients were followed for a 12-month period after surgery. Demographic information, surgical cost, operative time, and postoperative shunt failure data were collected in all patients in the study.

RESULTS

The authors analyzed 87 shunt surgeries in patients prior to standardization and 94 shunt surgeries in patients after standardization. The rate of violation of the standardized shunt valve policy after implementation was 5.3% (5 of 94 procedures). When comparing the prestandardization group to those who received the standardized valve, operative costs were less ($1821.04 vs $1333.75, p = 0.0034). There was no difference in operative times between groups (78 minutes vs 81 minutes, p = 0.5501). There was no difference in total number of shunt failures between the two groups at 12 months after surgery (p = 0.0859). The rate of postoperative infection was consistent with the literature at 8%.

CONCLUSIONS

In accordance with quality improvement principles, the reduction of unexplained clinical variance invariably leads to a decrease in cost and, more importantly, increased value. In this study, the implementation of a standardized shunt valve decreased operative cost. There were no differences in postoperative shunt failures at 12 months after surgery and no differences in length of surgery. Standardizing shunt valves in the treatment of pediatric hydrocephalus seems to be cost-effective and safe.

Restricted access

Katrina Ducis, R. Dianne Seibold, Tylyn Bremer, and Andrew Jea

OBJECTIVE

Hypothermia in adult surgical patients has been correlated with an increase in the occurrence of surgical site wound infections, increased bleeding, slower recovery from anesthetics, prolonged hospitalization, and increased healthcare costs. Pediatric surgical patients are at potentially increased risk for hypothermia because of their smaller body size, limited stores of subcutaneous fat, and less effective regulatory capacity. This risk is exacerbated during pediatric spinal surgery by lower preoperative temperature, increased surface exposure to cold during induction and positioning, and prolonged surgical procedure times. The purpose of this quality improvement initiative was to reduce the duration of hypothermia for pediatric patients undergoing spine surgery.

METHODS

Demographic and clinical data were collected on 162 patients who underwent spinal deformity surgery between October 1, 2017, and July 31, 2019. Data points included patient age, gender, diagnosis, surgical procedure, and temperature readings throughout different phases of perioperative care. Temperatures were obtained upon arrival to the day of surgery, upon presentation to the operating room, during prone positioning, at incision, and at the end of the procedure. Twelve patients were analyzed prior to implementation of a protocol, while 150 patients composed the post-protocol group.

RESULTS

Using descriptive statistics, the authors found that the average body temperature at the time of incision was 34.0°C prior to the adoption of a preoperative warming protocol, and 35.3°C following a preoperative warming protocol (p = 0.001). There were no complications, such as burns, hyperthermia, or arrhythmias, related to preoperative warming of patients.

CONCLUSIONS

The placement of a warming blanket on the bed prior to patient arrival and actively targeting normothermia reduced the incidence and duration of hypothermia in pediatric patients undergoing spine surgery with no adverse events.

Free access

Howard L. Weiner, P. David Adelson, Douglas L. Brockmeyer, Cormac O. Maher, Nalin Gupta, Matthew D. Smyth, Andrew Jea, Jeffrey P. Blount, Jay Riva-Cambrin, Sandi K. Lam, Edward S. Ahn, Gregory W. Albert, and Jeffrey R. Leonard

Free access

Deepak Khatri, Jaskaran Singh Gosal, Kuntal Kanti Das, Kamlesh Bhaisora, and Arun Kumar Srivastava

Restricted access

Shawyon Baygani, Kristin Zieles, and Andrew Jea

OBJECTIVE

The purpose of this study is to determine if the preoperative Pediatric Quality of Life Inventory (PedsQL) score is predictive of short- and intermediate-term PedsQL outcomes following Chiari decompression surgery. The utility of preoperative patient-reported outcomes (PROs) in predicting pain, opioid consumption, and long-term PROs has been demonstrated in adult spine surgery. To the best of the authors’ knowledge, however, there is currently no widely accepted tool to predict short-, intermediate-, or long-term outcomes after pediatric Chiari decompression surgery.

METHODS

A prospectively maintained database was retrospectively reviewed. Patients who had undergone first-time decompression for symptomatic Chiari malformation were identified and grouped according to their preoperative PedsQL scores: mild disability (score 80–100), moderate disability (score 60–79), and severe disability (score < 60). PedsQL scores at the 6-week, 3-month, and/or 6-month follow-ups were collected. Preoperative PedsQL subgroups were tested for an association with demographic and perioperative characteristics using one-way ANOVA or chi-square analysis. Preoperative PedsQL subgroups were tested for an association with improvements in short- and intermediate-term PedsQL scores using one-way ANOVA and a paired Wilcoxon signed-rank test controlling for statistically different demographic characteristics when appropriate.

RESULTS

A total of 87 patients were included in this analysis. According to their preoperative PedsQL scores, 28% of patients had mild disability, 40% had moderate disability, and 32% had severe disability. There was a significant difference in the prevalence of comorbidities (p = 0.009) and the presenting symptoms of headaches (p = 0.032) and myelopathy (p = 0.047) among the subgroups; however, in terms of other demographic or operative factors, there was no significant difference. Patients with greater preoperative disability demonstrated statistically significantly lower PedsQL scores at all postoperative time points, except in terms of the parent-reported PedsQL at 6 months after surgery (p = 0.195). Patients with severe disability demonstrated statistically significantly greater improvements (compared to preoperative scores) in PedsQL scores at all time points after surgery, except in terms of the 6-week and 6-month PROs and the 6-month parent-reported outcomes (p = 0.068, 0.483, and 0.076, respectively).

CONCLUSIONS

Patients with severe disability, as assessed by the PedsQL, had lower absolute PedsQL scores at all time points after surgery but greater improvement in short- and intermediate-term PROs. The authors conclude that the PedsQL is an efficient and accurate tool that can quickly assess patient disability in the preoperative period and predict both short- and intermediate-term surgical outcomes.

Restricted access

Jacob Archer, Meena Thatikunta, and Andrew Jea

The transoral transpharyngeal approach is the standard approach to resect the odontoid process and decompress the cervicomedullary spinal cord. There are some significant risks associated with this approach, however, including infection, CSF leak, prolonged intubation or tracheostomy, need for nasogastric tube feeding, extended hospitalization, and possible effects of phonation. Other ventral approaches, such as transmandibular and circumglossal, endoscopic transcervical, and endoscopic transnasal, are also viable alternatives but are technically challenging or may still traverse the nasopharyngeal cavity. Far-lateral and posterior extradural approaches to the craniocervical junction require extensive soft-tissue dissection. Recently, a posterior transdural approach was used to resect retro-odontoid cysts in 3 adult patients. The authors present the case of a 12-year-old girl with Down syndrome and significant spinal cord compression due to basilar invagination and a retro-flexed odontoid process. A posterior transdural odontoidectomy prior to occiptocervical fusion was performed. At 12 months after surgery, the authors report satisfactory clinical and radiographic outcomes with this approach.

Restricted access

Jonathan E. Martin, Brandon G. Rocque, Andrew Jea, Richard C. E. Anderson, Joshua Pahys, and Douglas Brockmeyer

OBJECTIVE

Hypermobility of the craniocervical junction (CCJ) in patients with Down syndrome (DS) is common. Whereas atlantoaxial (C1–2) hypermobility is well characterized, occipitoatlantal (Oc–C1) laxity is recognized but poorly defined. A clear understanding of the risks associated with DS-related hypermobility is lacking. Research efforts to address the topic of axial cervical spine instability in the patient with DS require a reliable and reproducible means of assessing CCJ mobility. The authors conducted a pilot study comparing two methods of quantifying motion of the CCJ on dynamic (flexion/extension) plain radiographs: the delta–condyle-axial interval (ΔCAI) and the delta–basion-axial interval (ΔBAI) methods.

METHODS

Dynamic radiographs from a cohort of 10 patients with DS were evaluated according to prescribed standards. Independent movement of Oc–C1, C1–2, and Oc–C2 was calculated. Interrater and intrarater reliability for CCJ mobility was then calculated for both techniques.

RESULTS

Measurement using the ΔCAI technique had excellent fidelity with intraclass correlation coefficients (ICCs) of 0.77, 0.71, and 0.80 for Oc–C1, C1–2, and Oc–C2, respectively. The ΔBAI technique had lower fidelity, yielding respective ICCs of 0.61, 0.65, and 0.50.

CONCLUSIONS

This pilot study suggests that ΔCAI is a superior measurement technique compared to ΔBAI and may provide reliable assessment of the mobility of the CCJ on dynamic radiographs in the pediatric patient with DS. The use of reliable and reproducible measurement techniques strengthens the validity of research derived from pooled database efforts.

Restricted access

Lourdes C. Eco, Alison Brayton, William E. Whitehead, and Andrew Jea

Chordomas are histologically benign tumors with local aggressive behavior. They arise from embryological remnants of the notochord at the clivus, mobile spine, and sacrum. Chordomas are rare tumors in the pediatric age group. Their surgical management is difficult, given their propensity for inaccessible anatomical regions, and proximity to critical neurovascular structures. While en bloc resection with surgical margins has been advocated as the preferred approach for chordomas, tumor characteristics and violation of adjacent anatomical boundaries may not allow for safe en bloc resection of the tumor. Here, the authors present the case of a C1 chordoma in a 5-year-old boy with epidural and prevertebral extension. The patient’s treatment consisted of a far-lateral approach for resection of the tumor and C1 arch, followed by circumferential reconstruction of the craniocervical junction with an expandable cage spanning the skull base to C2, and posterior occipitocervical spinal instrumentation. At 42 months after surgery, the patient remains neurologically intact with stable oncological status, and no evidence of craniocervical junction instrumentation failure.