Browse

You are looking at 1 - 10 of 12 items for

  • All content x
  • By Author: Cascino, Gregory D. x
Clear All
Restricted access

Sanjeet S. Grewal, Mohammed Ali Alvi, William J. Perkins, Gregory D. Cascino, Jeffrey W. Britton, David B. Burkholder, Elson So, Cheolsu Shin, Richard W. Marsh, Fredric B. Meyer, Gregory A. Worrell, and Jamie J. Van Gompel

OBJECTIVE

Almost 30% of the patients with suspected temporal lobe epilepsy (TLE) have normal results on MRI. Success rates for resection of MRI-negative TLE are less favorable, ranging from 36% to 76%. Herein the authors describe the impact of intraoperative electrocorticography (ECoG) augmented by opioid activation and its effect on postoperative seizure outcome.

METHODS

Adult and pediatric patients with medically resistant MRI-negative TLE who underwent standardized ECoG at the time of their elective anterior temporal lobectomy (ATL) with amygdalohippocampectomy between 1990 and 2016 were included in this study. Seizure recurrence comprised the primary outcome of interest and was assessed using Kaplan-Meier and multivariable Cox regression analysis plots based on distribution of interictal epileptiform discharges (IEDs) recorded on scalp electroencephalography, baseline and opioid-induced IEDs on ECoG, and extent of resection.

RESULTS

Of the 1144 ATLs performed at the authors’ institution between 1990 and 2016, 127 (11.1%) patients (81 females) with MRI-negative TLE were eligible for this study. Patients with complete resection of tissue generating IED recorded on intraoperative ECoG were less likely to have seizure recurrence compared to those with incomplete resection on univariate analysis (p < 0.05). No difference was found in seizure recurrence between patients with bilateral independent IEDs and unilateral IEDs (p = 0.15), presence or absence of opioid-induced epileptiform activation (p = 0.61), or completeness of resection of tissue with opioid-induced IEDs on intraoperative ECoG (p = 0.41).

CONCLUSIONS

The authors found that incomplete resection of IED-generating tissue on intraoperative ECoG was associated with an increased chance of seizure recurrence. However, they found that induction of epileptiform activity with intraoperative opioid activation did not provide useful intraoperative data predictive of improving operative results for temporal lobectomy in MRI-negative epilepsy.

Full access

Panagiotis Kerezoudis, Sanjeet S. Grewal, Matthew Stead, Brian Nils Lundstrom, Jeffrey W. Britton, Cheolsu Shin, Gregory D. Cascino, Benjamin H. Brinkmann, Gregory A. Worrell, and Jamie J. Van Gompel

OBJECTIVE

Epilepsy surgery is effective for lesional epilepsy, but it can be associated with significant morbidity when seizures originate from eloquent cortex that is resected. Here, the objective was to describe chronic subthreshold cortical stimulation and evaluate its early surgical safety profile in adult patients with epilepsy originating from seizure foci in cortex that is not amenable to resection.

METHODS

Adult patients with focal drug-resistant epilepsy underwent intracranial electroencephalography monitoring for evaluation of resection. Those with seizure foci in eloquent cortex were not candidates for resection and were offered a short therapeutic trial of continuous subthreshold cortical stimulation via intracranial monitoring electrodes. After a successful trial, electrodes were explanted and permanent stimulation hardware was implanted.

RESULTS

Ten patients (6 males) who underwent chronic subthreshold cortical stimulation between 2014 and 2016 were included. Based on radiographic imaging, intracranial pathologies included cortical dysplasia (n = 3), encephalomalacia (n = 3), cortical tubers (n = 1), Rasmussen encephalitis (n = 1), and linear migrational anomaly (n = 1). The duration of intracranial monitoring ranged from 3 to 20 days. All patients experienced an uneventful postoperative course and were discharged home with a median length of stay of 10 days. No postoperative surgical complications developed (median follow-up length 7.7 months). Seizure severity and seizure frequency improved in all patients.

CONCLUSIONS

The authors’ institutional experience with this small group shows that chronic subthreshold cortical stimulation can be safely and effectively performed in appropriately selected patients without postoperative complications. Future investigation will provide further insight to recently published results regarding mechanism and efficacy of this novel and promising intervention.

Restricted access

Jamie J. Van Gompel, Jesus Rubio, Gregory D. Cascino, Gregory A. Worrell, and Fredric B. Meyer

Object

Cavernous hemangiomas associated with epilepsy present an interesting surgical dilemma in terms of whether one should perform a pure lesionectomy or tailored resection, especially in the temporal lobe given the potential for cognitive damage. This decision is often guided by electrocorticography (ECoG), despite the lack of data regarding its value in cavernoma surgery. The purpose of the present study was several-fold: first, to determine the epilepsy outcome following resection of cavernomas in all brain regions; second, to evaluate the usefulness of ECoG in guiding surgical decision making; and third, to determine the optimum surgical approach for temporal lobe cavernomas.

Methods

The authors identified from their surgical database 173 patients who had undergone resection of cavernomas. One hundred two of these patients presented with epilepsy, and 61 harbored temporal lobe cavernomas. Preoperatively, all patients were initially evaluated by an epileptologist. The mean follow-up was 37 months.

Results

Regardless of the cavernoma location, surgery resulted in an excellent seizure control rate: Engel Class I outcome in 88% of patients at 2 years postoperatively. Of 61 patients with temporal lobe cavernomas, the mesial structures were involved in 35. Among the patients with temporal lobe cavernomas, those who underwent ECoG typically had a more extensive parenchymal resection rather than a lesionectomy (p < 0.0001). The use of ECoG in cases of temporal lobe cavernomas resulted in a superior seizure-free outcome: 79% (29 patients) versus 91% (23 patients) of patients at 6 months postresection, 77% (22 patients) versus 90% (20 patients) at 1 year, and 79% (14 patients) versus 83% (18 patients) at 2 years without ECoG versus with ECoG, respectively.

Conclusions

The surgical removal of cavernomas most often leads to an excellent epilepsy outcome. In cases of temporal lobe cavernomas, the more extensive the ECoG-guided resection, the better the seizure outcome. In addition to upholding the concept of kindling, the data in this study support the use of ECoG in temporal lobe cavernoma surgery in patients presenting with epilepsy.

Restricted access

Nicholas M. Wetjen, W. Richard Marsh, Fredric B. Meyer, Gregory D. Cascino, Elson So, Jeffrey W. Britton, S. Matthew Stead, and Gregory A. Worrell

Object

Patients with normal MR imaging (nonlesional) findings and medically refractory extratemporal epilepsy make up a disproportionate number of nonexcellent outcomes after epilepsy surgery. In this paper, the authors investigated the usefulness of intracranial electroencephalography (iEEG) in the identification of surgical candidates.

Methods

Between 1992 and 2002, 51 consecutive patients with normal MR imaging findings and extratemporal epilepsy underwent intracranial electrode monitoring. The implantation of intracranial electrodes was determined by seizure semiology, interictal and ictal scalp EEG, SPECT, and in some patients PET studies. The demographics of patients at the time of surgery, lobar localization of electrode implantation, duration of follow-up, and Engel outcome score were abstracted from the Mayo Rochester Epilepsy Surgery Database. A blinded independent review of the iEEG records was conducted for this study.

Results

Thirty-one (61%) of the 51 patients who underwent iEEG ultimately underwent resection for their epilepsy. For 28 (90.3%) of the 31 patients who had epilepsy surgery, adequate information regarding follow-up (> 1 year), seizure frequency, and iEEG recordings was available. Twenty-six (92.9%) of 28 patients had frontal lobe resections, and 2 had parietal lobe resections. The most common iEEG pattern at seizure onset in the surgically treated group was a focal high-frequency discharge (in 15 [53.6%] of 28 patients). Ten (35.7%) of the 28 surgically treated patients were seizure free. Fourteen (50%) had Engel Class I outcomes, and overall, 17 (60.7%) had significant improvement (Engel Class I and IIAB with ≥80% seizure reduction). Focal high-frequency oscillation at seizure onset was associated with Engel Class I surgical outcome (12 [85.7%] of 14 patients, p = 0.02), and it was uncommon in the nonexcellent outcome group (3 [21.4%] of 14 patients).

Conclusions

A focal high-frequency oscillation (> 20 Hz) at seizure onset on iEEG may identify patients with nonlesional extratemporal epilepsy who are likely to have an Engel Class I outcome after epilepsy surgery. The prospect of excellent outcome in nonlesional extratemporal lobe epilepsy prior to intracranial monitoring is poor (14 [27.5%] of 51 patients). However, iEEG can further stratify patients and help identify those with a greater likelihood of Engel Class I outcome after surgery.

Restricted access

Frederic Collignon, Nicholas M. Wetjen, Aaron A. Cohen-Gadol, Gregory D. Cascino, Joseph Parisi, Fredric B. Meyer, W. Richard Marsh, Patrick Roche, and Stephen D. Weigand

Object

The causes of epileptic events remain unclear. Much in vitro and in vivo experimental evidence suggests that gap junctions formed by connexins (Cxs) between neurons and/or astrocytes contribute to the generation and maintenance of seizures; however, few experiments have been conducted in humans, and those completed have shown controversial data. The authors designed a study to compare the level of expression of Cxs in hippocampi from epileptic and nonepileptic patients to assess whether an alteration of gap junction expression in epileptic tissue plays a role in seizure origin and propagation.

Methods

The expression of Cxs32, -36, and -43 was studied in 47 consecutive samples of hippocampi obtained from epileptic patients who had undergone an amygdalohippocampectomy for the treatment of intractable seizure. These expression levels were compared with those in hippocampi obtained in nonepileptic patients during postmortem dissection. Immunostaining was performed to create one slide for each of the three Cxs. Each slide demonstrated multiple cells from each of six regions (CA1, CA2, CA3, CA4, dentate gyrus, and subiculum). Two independent reviewers rated each Cx–region combination according to an immunoreactive score.

Across all three measures—that is, staining intensity, percentage of positively stained cells, and immunoreactive score—Cx32 appeared to be expressed at a significantly lower level in the epileptic patients compared with controls (p < 0.001 for each measure), whereas Cx43 appeared to be expressed more among the epileptic patients (p < 0.001 for each measure). There was no evidence of any differential expression of Cx36. There was, however, regional variation within each Cx subtype. For Cx36, the staining intensity was higher in the CA2 region in the epilepsy group.

Conclusions

The increase in Cx43, decrease in Cx32, and preservation of Cx36 expression in hippocampi from epileptic persons could play a role in the development of seizures in patients with temporal sclerosis. Additional studies must be completed to understand this mechanism better.

Restricted access

Nicholas M. Wetjen, Gregory D. Cascino, A. James Fessler, Elson L. So, Jeffrey R. Buchhalter, Brian P. Mullan, Terence J. O’Brien, Fredric B. Meyer, and W. Richard Marsh

Object

The aim of this study was to determine whether ictal single-photon emission computed tomography (SPECT) is useful in localizing the site of seizure onset in patients in whom surgery for intractable epilepsy failed and who are being considered for repeated surgery.

Methods

Subtraction ictal SPECT coregistered to magnetic resonance imaging (SISCOM) studies were retrospectively analyzed in 58 patients who were being evaluated for possible repeated resection for intractable partial epilepsy between January 1, 1996, and October 31, 1999. All patients had persistent seizures subsequent to an initial resection and underwent another excision. The SISCOM-demonstrated abnormalities were classified as concordant, discordant, or indeterminate, compared with the localization of the epileptogenic zone revealed on video electroencephalography monitoring. The ability of SISCOM to predict operative outcome was also determined in patients who had undergone repeated surgical procedures.

The SISCOM studies revealed a localized hyperperfused alteration in 46 (79%) of 58 patients. Forty-one (89%) of these 46 patients had a SISCOM-demonstrated alteration in the hemisphere of the previous epilepsy surgery. Imaging changes in 33 (72%) of the 46 patients were at the site of the previous focal cortical resection. Eight (17%) of the 46 had SISCOM-demonstrated abnormalities remote from the lobe in which surgery had been performed but in the ipsilateral hemisphere. The hyperperfusion focus was in the contralateral hemisphere in the remaining five patients (11%). The site of the epileptogenic zone was concordant with the SISCOM focus in 32 (70%) of 46 patients. Twenty-six patients underwent repeated resection and were followed up for a mean of 44 months thereafter; 11 of these patients (42%) had a significant reduction in seizure tendency. Only five patients (19%) were seizure free. Ten (50%) of 20 patients with a concordant SISCOM focus compared with none (0%) of three patients with a discordant focus had a favorable surgical outcome (p = 0.23).

Conclusions

The SISCOM method might be useful in the evaluation of, and the surgical planning for, patients with intractable partial epilepsy in whom previous resective treatment has failed and who are being considered for reoperation.

Restricted access

Aaron A. Cohen-Gadol, Brian G. Wilhelmi, Frederic Collignon, J. Bradley White, Jeffrey W. Britton, Denise M. Cambier, Teresa J. H. Christianson, W. Richard Marsh, Fredric B. Meyer, and Gregory D. Cascino

Object

The authors reviewed the long-term outcome of focal resection in a large group of patients who had intractable partial nonlesional epilepsy, including mesial temporal lobe sclerosis (MTS), and who were treated consecutively at a single institution. The goal of this study was to evaluate the long-term efficacy of epilepsy surgery and the preoperative factors associated with seizure outcome.

Methods

This retrospective analysis included 399 consecutive patients who underwent epilepsy surgery at Mayo Clinic in Rochester, Minnesota, between 1988 and 1996. The mean age of the patients at surgery was 32 ± 12 years (range 3–69 years), and the mean age at seizure onset was 12 ± 11 years (range 0–55 years). There were 214 female (54%) and 185 male (46%) patients. The mean duration of epilepsy was 20 ±12 years (range 1–56 years). The preceding values are given as the mean ± standard deviation.

Of the 399 patients, 237 (59%) had a history of complex partial seizures, 119 (30%) had generalized seizures, 26 (6%) had simple partial seizures, and 17 (4%) had experienced a combination of these. Preoperative evaluation included a routine and video-electroencephalography recordings, magnetic resonance imaging of the head according to the seizure protocol, neuropsychological testing, and a sodium amobarbital study. Patients with an undefined epileptogenic focus and discordant preoperative studies underwent an intracranial study. The mean duration of follow up was 6.2 ± 4.5 years (range 0.6–15.7 years). Seizure outcome was categorized based on the modified Engel classification. Time-to-event analysis was performed using Kaplan–Meier curves and Cox regression models to evaluate the risk factors associated with outcomes.

Among these patients, 372 (93%) underwent temporal and 27 (7%) had extratemporal resection of their epileptogenic focus. Histopathological examination of the resected specimens revealed MTS in 113 patients (28%), gliosis in 237 (59%), and normal findings in 49 (12%). Based on the Kaplan–Meier analysis, the probability of an Engel Class I outcome (seizure free, auras, or seizures related only to medication withdrawal) for the overall patient group was 81% (95% confidence interval [CI] 77–85%) at 6 months, 78% (CI 74–82%) at 1 year, 76% (CI 72–80%) at 2 years, 74% (CI 69–78%) at 5 years, and 72% (CI 67–77%) at 10 years postoperatively. The rate of Class I outcomes remained 72% for 73 patients with more than 10 years of follow up. If a patient was in Class I at 1 year postoperatively, the probability of seizure remission at 10 years postoperatively was 92% (95% CI 89–96%); almost all seizures occurred during the 1st year after surgery. Factors predictive of poor outcome from surgery were normal pathological findings in resected tissue (p = 0.038), male sex (p = 0.035), previous surgery (p < 0.001), and an extratemporal origin of seizures (p < 0.001).

Conclusions

The response to epilepsy surgery during the 1st follow-up year is a reliable indicator of the long-term Engel Class I postoperative outcome. This finding may have important implications for patient counseling and postoperative discontinuation of anticonvulsant medications.

Restricted access

Aaron A. Cohen-Gadol, Jacqueline A. Leavitt, James J. Lynch, W. Richard Marsh, and Gregory D. Cascino

Object. In this prospective study the authors investigated the incidence and natural history of postoperative diplopia in patients undergoing anterior temporal lobectomy (ATL) and amygdalohippocampectomy for medically intractable mesial temporal lobe epilepsy.

Methods. Forty-seven patients scheduled for ATL for medically refractory seizures were examined preoperatively, 2 to 7 days postoperatively, and 3 to 6 months postoperatively. Ophthalmological examination including pupillary measurements, stereoacuity measurements, palpebral fissure measurements, vertical fusional amplitudes, Lancaster red green testing, visual field testing, and alternate cover testing was performed. Antiepileptic drug levels were monitored.

Nine (19%) of 47 patients developed diplopia postoperatively. The diplopia was caused by trochlear nerve palsy in every case. No oculomotor nerve dysfunction was documented. Trochlear nerve function recovered completely in all patients within 3 to 6 months postoperatively.

Conclusions. Postoperative diplopia following ATL occurs more often than previously thought and is primarily due to trochlear nerve dysfunction. Awareness of this transient complication is important in preoperative patient counseling.

Restricted access

Aaron A. Cohen-Gadol, Jeffrey W. Britton, Frederic P. Collignon, Lisa M. Bates, Gregory D. Cascino, and Fredric B. Meyer

Object. Surgical treatment options for intractable seizures caused by a nonlesional epileptogenic focus located in the central sulcus region are limited. The authors describe an alternative surgical approach for treating medically refractory nonlesional perirolandic epilepsy.

Methods. Five consecutive patients who were treated between 1996 and 2000 for nonlesional partial epilepsy that had originated in the central lobule were studied. The patients' ages ranged from 16 to 56 years (mean 28.6 years; there were four men and one woman). The duration of their epilepsy ranged from 8 to 39 years (mean 20.2 years), with a mean seizure frequency of 19 partial seizures per week. Preoperative assessment included video electroencephalography (EEG) and subtracted ictal—interictal single-photon emission computerized tomography coregistered with magnetic resonance imaging (SISCOM). Patients underwent an awake craniotomy stereotactically guided by the ictal EEG and SISCOM studies. Cortical stimulation was used to identify the sensorimotor cortex and to reproduce the patient's aura. A subdural grid was then implanted based on these results. Subsequent postoperative ictal electrocorticographic recordings and cortical stimulation further delineated the site of seizure onset and functional anatomy. During a second awake craniotomy, a limited resection of the epileptogenic central lobule region was performed while function was continuously monitored intraoperatively. One resection was limited to the precentral gyrus, two to the postcentral gyrus, and in two the excisions involved regions of both the pre- and postcentral gyri.

In three patients a hemiparesis occurred postsurgery but later resolved. In the four patients whose resection involved the postcentral gyrus, transient cortical sensory loss and apraxia occurred, which completely resolved in three. Two patients are completely seizure free, two have experienced occasional nondisabling seizures, and one patient has benefited from a more than 75% reduction in seizure frequency. The follow-up period ranged from 2 to 5.5 years (mean 3.5 years).

Conclusions. A limited resection of the sensorimotor cortex may be performed with acceptable neurological morbidity in patients with medically refractory perirolandic epilepsy. This procedure is an alternative to multiple subpial transections in the surgical management of intractable nonlesional epilepsy originating from the sensorimotor cortex.

Full access

Bhaskara Rao Malla, Terence J. O'Brien, Gregory D. Cascino, Elson L. So, Kurupath Radhakrishnan, Peter Silbert, and W. Richard Marsh

Recurrence of seizures immediately following epilepsy surgery can be emotionally devastating, and raises concerns about the chances of successfully attaining long-term seizure control. The goals of this study were to investigate the frequency of acute postoperative seizure (APOS) occurring in the 1st postoperative week following anterior temporal lobectomy (ATL) to identify potential risk factors and to determine their prognostic significance.

One hundred sixty consecutive patients who underwent an ATL for intractable nonlesional temporal lobe epilepsy were retrospectively studied. Acute postoperative seizures occurred in 32 patients (20%). None of the following factors were shown to be significantly associated with the occurrence of APOS: age at surgery, duration of epilepsy, side of surgery, extent of neocortical resection, electrocorticography findings, presence of mesial temporal sclerosis, and hippocampal volume measurements (p > 0.05). Patients who suffered from APOS overall had a lower rate of favorable outcome with respect to seizure control at the last follow-up examination than patients without APOS (62.5% compared with 83.6%, p < 0.05). The type of APOS was of prognostic importance, with patients whose APOS were similar to their preoperative habitual seizures having a significantly worse outcome than those whose APOS were auras or were focal motor and/or generalized tonic-clonic seizures (excellent outcome: 14.3%, 77.8%, and 75%, respectively, p < 0.05). Only patients who had APOS similar to preoperative habitual seizures were less likely to have an excellent outcome than patients without APOS (14.3% compared with 75%, p < 0.05). Timing of the APOS and identification of a precipitating factor were of no prognostic importance.

The findings of this study may be useful in counseling patients who suffer from APOS following ATL for temporal lobe epilepsy.