Browse

You are looking at 1 - 10 of 69 items for

  • All content x
  • By Author: Bydon, Ali x
Clear All
Restricted access

Wuyang Yang, Jordina Rincon-Torroella, James Feghali, Adham M. Khalafallah, Wataru Ishida, Alexander Perdomo-Pantoja, Alfredo Quiñones-Hinojosa, Michael Lim, Gary L. Gallia, Gregory J. Riggins, William S. Anderson, Sheng-Fu Larry Lo, Daniele Rigamonti, Rafael J. Tamargo, Timothy F. Witham, Ali Bydon, Alan R. Cohen, George I. Jallo, Alban Latremoliere, Mark G. Luciano, Debraj Mukherjee, Alessandro Olivi, Lintao Qu, Ziya L. Gokaslan, Daniel M. Sciubba, Betty Tyler, Henry Brem, and Judy Huang

OBJECTIVE

International research fellows have been historically involved in academic neurosurgery in the United States (US). To date, the contribution of international research fellows has been underreported. Herein, the authors aimed to quantify the academic output of international research fellows in the Department of Neurosurgery at The Johns Hopkins University School of Medicine.

METHODS

Research fellows with Doctor of Medicine (MD), Doctor of Philosophy (PhD), or MD/PhD degrees from a non-US institution who worked in the Hopkins Department of Neurosurgery for at least 6 months over the past decade (2010–2020) were included in this study. Publications produced during fellowship, number of citations, and journal impact factors (IFs) were analyzed using ANOVA. A survey was sent to collect information on personal background, demographics, and academic activities.

RESULTS

Sixty-four international research fellows were included, with 42 (65.6%) having MD degrees, 17 (26.6%) having PhD degrees, and 5 (7.8%) having MD/PhD degrees. During an average 27.9 months of fellowship, 460 publications were produced in 136 unique journals, with 8628 citations and a cumulative journal IF of 1665.73. There was no significant difference in total number of publications, first-author publications, and total citations per person among the different degree holders. Persons holding MD/PhDs had a higher number of citations per publication per person (p = 0.027), whereas those with MDs had higher total IFs per person (p = 0.048). Among the 43 (67.2%) survey responders, 34 (79.1%) had nonimmigrant visas at the start of the fellowship, 16 (37.2%) were self-paid or funded by their country of origin, and 35 (81.4%) had mentored at least one US medical student, nonmedical graduate student, or undergraduate student.

CONCLUSIONS

International research fellows at the authors’ institution have contributed significantly to academic neurosurgery. Although they have faced major challenges like maintaining nonimmigrant visas, negotiating cultural/language differences, and managing self-sustainability, their scientific productivity has been substantial. Additionally, the majority of fellows have provided reciprocal mentorship to US students.

Restricted access

Adham M. Khalafallah, Adrian E. Jimenez, Nathan A. Shlobin, Collin J. Larkin, Debraj Mukherjee, Corinna C. Zygourakis, Sheng-Fu Lo, Daniel M. Sciubba, Ali Bydon, Timothy F. Witham, Nader S. Dahdaleh, and Nicholas Theodore

OBJECTIVE

Although fellowship training is becoming increasingly common in neurosurgery, it is unclear which factors predict an academic career trajectory among spinal neurosurgeons. In this study, the authors sought to identify predictors associated with academic career placement among fellowship-trained neurological spinal surgeons.

METHODS

Demographic data and bibliometric information on neurosurgeons who completed a residency program accredited by the Accreditation Council for Graduate Medical Education between 1983 and 2019 were gathered, and those who completed a spine fellowship were identified. Employment was denoted as academic if the hospital where a neurosurgeon worked was affiliated with a neurosurgical residency program; all other positions were denoted as nonacademic. A logistic regression model was used for multivariate statistical analysis.

RESULTS

A total of 376 fellowship-trained spinal neurosurgeons were identified, of whom 140 (37.2%) held academic positions. The top 5 programs that graduated the most fellows in the cohort were Cleveland Clinic, The Johns Hopkins Hospital, University of Miami, Barrow Neurological Institute, and Northwestern University. On multivariate analysis, increased protected research time during residency (OR 1.03, p = 0.044), a higher h-index during residency (OR 1.12, p < 0.001), completing more than one clinical fellowship (OR 2.16, p = 0.024), and attending any of the top 5 programs that graduated the most fellows (OR 2.01, p = 0.0069) were independently associated with an academic career trajectory.

CONCLUSIONS

Increased protected research time during residency, a higher h-index during residency, completing more than one clinical fellowship, and attending one of the 5 programs graduating the most fellowship-trained neurosurgical spinal surgeons independently predicted an academic career. These results may be useful in identifying and advising trainees interested in academic spine neurosurgery.

Restricted access

Adham M. Khalafallah, Adrian E. Jimenez, Nathan A. Shlobin, Collin J. Larkin, Debraj Mukherjee, Corinna C. Zygourakis, Sheng-Fu Lo, Daniel M. Sciubba, Ali Bydon, Timothy F. Witham, Nader S. Dahdaleh, and Nicholas Theodore

OBJECTIVE

Although fellowship training is becoming increasingly common in neurosurgery, it is unclear which factors predict an academic career trajectory among spinal neurosurgeons. In this study, the authors sought to identify predictors associated with academic career placement among fellowship-trained neurological spinal surgeons.

METHODS

Demographic data and bibliometric information on neurosurgeons who completed a residency program accredited by the Accreditation Council for Graduate Medical Education between 1983 and 2019 were gathered, and those who completed a spine fellowship were identified. Employment was denoted as academic if the hospital where a neurosurgeon worked was affiliated with a neurosurgical residency program; all other positions were denoted as nonacademic. A logistic regression model was used for multivariate statistical analysis.

RESULTS

A total of 376 fellowship-trained spinal neurosurgeons were identified, of whom 140 (37.2%) held academic positions. The top 5 programs that graduated the most fellows in the cohort were Cleveland Clinic, The Johns Hopkins Hospital, University of Miami, Barrow Neurological Institute, and Northwestern University. On multivariate analysis, increased protected research time during residency (OR 1.03, p = 0.044), a higher h-index during residency (OR 1.12, p < 0.001), completing more than one clinical fellowship (OR 2.16, p = 0.024), and attending any of the top 5 programs that graduated the most fellows (OR 2.01, p = 0.0069) were independently associated with an academic career trajectory.

CONCLUSIONS

Increased protected research time during residency, a higher h-index during residency, completing more than one clinical fellowship, and attending one of the 5 programs graduating the most fellowship-trained neurosurgical spinal surgeons independently predicted an academic career. These results may be useful in identifying and advising trainees interested in academic spine neurosurgery.

Restricted access

Robert Young, Ethan Cottrill, Zach Pennington, Jeff Ehresman, A. Karim Ahmed, Timothy Kim, Bowen Jiang, Daniel Lubelski, Alex M. Zhu, Katherine S. Wright, Donna Gavin, Alyson Russo, Marie N. Hanna, Ali Bydon, Timothy F. Witham, Corinna Zygourakis, and Nicholas Theodore

OBJECTIVE

Enhanced Recovery After Surgery (ERAS) protocols have rapidly gained popularity in multiple surgical specialties and are recognized for their potential to improve patient outcomes and decrease hospitalization costs. However, they have only recently been applied to spinal surgery. The goal in the present work was to describe the development, implementation, and impact of an Enhanced Recovery After Spine Surgery (ERASS) protocol for patients undergoing elective spine procedures at an academic community hospital.

METHODS

A multidisciplinary team, drawing on prior publications and spine surgery best practices, collaborated to develop an ERASS protocol. Patients undergoing elective cervical or lumbar procedures were prospectively enrolled at a single tertiary care center; interventions were standardized across the cohort for pre-, intra-, and postoperative care using standardized order sets in the electronic medical record. Protocol efficacy was evaluated by comparing enrolled patients to a historic cohort of age- and procedure-matched controls. The primary study outcomes were quantity of opiate use in morphine milligram equivalents (MMEs) on postoperative day (POD) 1 and length of stay. Secondary outcomes included frequency and duration of indwelling urinary catheter use, discharge disposition, 30-day readmission and reoperation rates, and complication rates. Multivariable linear regression was used to determine whether ERASS protocol use was independently predictive of opiate use on POD 1.

RESULTS

In total, 97 patients were included in the study cohort and were compared with a historic cohort of 146 patients. The patients in the ERASS group had lower POD 1 opiate use than the control group (26 ± 33 vs 42 ± 40 MMEs, p < 0.001), driven largely by differences in opiate-naive patients (16 ± 21 vs 38 ± 36 MMEs, p < 0.001). Additionally, patients in the ERASS group had shorter hospitalizations than patients in the control group (51 ± 30 vs 62 ± 49 hours, p = 0.047). On multivariable regression, implementation of the ERASS protocol was independently predictive of lower POD 1 opiate consumption (β = −7.32, p < 0.001). There were no significant differences in any of the secondary outcomes.

CONCLUSIONS

The authors found that the development and implementation of a comprehensive ERASS protocol led to a modest reduction in postoperative opiate consumption and hospital length of stay in patients undergoing elective cervical or lumbar procedures. As suggested by these results and those of other groups, the implementation of ERASS protocols may reduce care costs and improve patient outcomes after spine surgery.

Restricted access

Zach Pennington, Daniel Lubelski, Erick M. Westbroek, A. Karim Ahmed, Jeff Ehresman, Matthew L. Goodwin, Sheng-Fu Lo, Timothy F. Witham, Ali Bydon, Nicholas Theodore, and Daniel M. Sciubba

OBJECTIVE

Postoperative C5 palsy affects 7%–12% of patients who undergo posterior cervical decompression for degenerative cervical spine pathologies. Minimal evidence exists regarding the natural history of expected recovery and variables that affect palsy recovery. The authors investigated pre- and postoperative variables that predict recovery and recovery time among patients with postoperative C5 palsy.

METHODS

The authors included patients who underwent posterior cervical decompression at a tertiary referral center between 2004 and 2018 and who experienced postoperative C5 palsy. All patients had preoperative MR images and full records, including operative note, postoperative course, and clinical presentation. Kaplan-Meier survival analysis was used to evaluate both times to complete recovery and to new neurological baseline—defined by deltoid strength on manual motor testing of the affected side—as a function of clinical symptoms, surgical maneuvers, and the severity of postoperative deficits.

RESULTS

Seventy-seven patients were included, with an average age of 64 years. The mean follow-up period was 17.7 months. The mean postoperative C5 strength was grade 2.7/5, and the mean time to first motor examination with documented C5 palsy was 3.5 days. Sixteen patients (21%) had bilateral deficits, and 9 (12%) had new-onset biceps weakness; 36% of patients had undergone C4–5 foraminotomy of the affected root, and 17% had presented with radicular pain in the dermatome of the affected root. On univariable analysis, patients’ reporting of numbness or tingling (p = 0.02) and a baseline deficit (p < 0.001) were the only predictors of time to recovery. Patients with grade 4+/5 weakness had significantly shorter times to recovery than patients with grade 4/5 weakness (p = 0.001) or ≤ grade 3/5 weakness (p < 0.001). There was no difference between those with grade 4/5 weakness and those with ≤ grade 3/5 weakness. Patients with postoperative strength < grade 3/5 had a < 50% chance of achieving complete recovery.

CONCLUSIONS

The timing and odds of recovery following C5 palsy were best predicted by the magnitude of the postoperative deficit. The use of C4–5 foraminotomy did not predict the time to or likelihood of recovery.

Restricted access

Wataru Ishida, Joshua Casaos, Arun Chandra, Adam D’Sa, Seba Ramhmdani, Alexander Perdomo-Pantoja, Nicholas Theodore, George Jallo, Ziya L. Gokaslan, Jean-Paul Wolinsky, Daniel M. Sciubba, Ali Bydon, Timothy F. Witham, and Sheng-Fu L. Lo

OBJECTIVE

With the advent of intraoperative electrophysiological neuromonitoring (IONM), surgical outcomes of various neurosurgical pathologies, such as brain tumors and spinal deformities, have improved. However, its diagnostic and therapeutic value in resecting intradural extramedullary (ID-EM) spinal tumors has not been well documented in the literature. The objective of this study was to summarize the clinical results of IONM in patients with ID-EM spinal tumors.

METHODS

A retrospective patient database review identified 103 patients with ID-EM spinal tumors who underwent tumor resection with IONM (motor evoked potentials, somatosensory evoked potentials, and free-running electromyography) from January 2010 to December 2015. Patients were classified as those without any new neurological deficits at the 6-month follow-up (group A; n = 86) and those with new deficits (group B; n = 17). Baseline characteristics, clinical outcomes, and IONM findings were collected and statistically analyzed. In addition, a meta-analysis in compliance with the PRISMA guidelines was performed to estimate the overall pooled diagnostic accuracy of IONM in ID-EM spinal tumor resection.

RESULTS

No intergroup differences were discovered between the groups regarding baseline characteristics and operative data. In multivariate analysis, significant IONM changes (p < 0.001) and tumor location (thoracic vs others, p = 0.018) were associated with new neurological deficits at the 6-month follow-up. In predicting these changes, IONM yielded a sensitivity of 82.4% (14/17), specificity of 90.7% (78/86), positive predictive value (PPV) of 63.6% (14/22), negative predictive value (NPV) of 96.3% (78/81), and area under the curve (AUC) of 0.893. The diagnostic value slightly decreased in patients with schwannomas (AUC = 0.875) and thoracic tumors (AUC = 0.842). Among 81 patients who did not demonstrate significant IONM changes at the end of surgery, 19 patients (23.5%) exhibited temporary intraoperative exacerbation of IONM signals, which were recovered by interruption of surgical maneuvers; none of these patients developed new neurological deficits postoperatively. Including the present study, 5 articles encompassing 323 patients were eligible for this meta-analysis, and the overall pooled diagnostic value of IONM was a sensitivity of 77.9%, a specificity of 91.1%, PPV of 56.7%, and NPV of 95.7%.

CONCLUSIONS

IONM for the resection of ID-EM spinal tumors is a reasonable modality to predict new postoperative neurological deficits at the 6-month follow-up. Future prospective studies are warranted to further elucidate its diagnostic and therapeutic utility.

Full access

Seba Ramhmdani, Marc Comair, Camilo A. Molina, Daniel M. Sciubba, and Ali Bydon

Interspinous process devices (IPDs) have been developed as less-invasive alternatives to spinal fusion with the goal of decompressing the spinal canal and preserving segmental motion. IPD implantation is proposed to treat symptoms of lumbar spinal stenosis that improve during flexion. Recent indications of IPD include lumbar facet joint syndrome, which is seen in patients with mainly low-back pain. Long-term outcomes in this subset of patients are largely unknown. The authors present a previously unreported complication of coflex (IPD) placement: the development of a large compressive lumbar synovial cyst. A 64-year-old woman underwent IPD implantation (coflex) at L4–5 at an outside hospital for low-back pain that occasionally radiates to the right leg. Postoperatively, her back and right leg pain persisted and worsened. MRI was repeated and showed a new, large synovial cyst at the previously treated level, severely compressing the patient’s cauda equina. Four months later, she underwent removal of the interspinous process implant, bilateral laminectomy, facetectomy, synovial cyst resection, interbody fusion, and stabilization. At the 3-month follow-up, she reported significant back pain improvement with some residual leg pain. This case suggests that facet arthrosis may not be an appropriate indication for placement of coflex.

Free access

Corinna C. Zygourakis, A. Karim Ahmed, Samuel Kalb, Alex M. Zhu, Ali Bydon, Neil R. Crawford, and Nicholas Theodore

The Excelsius GPS (Globus Medical, Inc.) was approved by the FDA in 2017. This novel robot allows for real-time intraoperative imaging, registration, and direct screw insertion through a rigid external arm—without the need for interspinous clamps or K-wires. The authors present one of the first operative cases utilizing the Excelsius GPS robotic system in spinal surgery. A 75-year-old man presented with severe lower back pain and left leg radiculopathy. He had previously undergone 3 decompressive surgeries from L3 to L5, with evidence of instability and loss of sagittal balance. Robotic assistance was utilized to perform a revision decompression with instrumented fusion from L3 to S1. The usage of robotic assistance in spinal surgery may be an invaluable resource in minimally invasive cases, minimizing the need for fluoroscopy, or in those with abnormal anatomical landmarks.

The video can be found here: https://youtu.be/yVI-sJWf9Iw.

Full access

Hannah M. Carl, A. Karim Ahmed, Nancy Abu-Bonsrah, Rafael De la Garza Ramos, Eric W. Sankey, Zachary Pennington, Ali Bydon, Timothy F. Witham, Jean-Paul Wolinsky, Ziya L. Gokaslan, Justin M. Sacks, C. Rory Goodwin, and Daniel M. Sciubba

OBJECTIVE

Resection of metastatic spine tumors can improve patients’ quality of life by addressing pain or neurological compromise. However, resections are often complicated by wound dehiscence, infection, instrumentation failures, and the need for reoperation. Moreover, when reoperations are needed, the most common indication is surgical site infection and wound breakdown. In turn, wound reoperations increase morbidity as well as the length and cost of hospitalization. The aim of this study was to examine perioperative risk factors associated with increased rate of wound reoperations after metastatic spine tumor resection.

METHODS

A retrospective study of patients at a single institution who underwent metastatic spine tumor resection between 2003 and 2013 was conducted. Factors with a p value < 0.200 in a univariate analysis were included in the multivariate model.

RESULTS

A total of 159 patients were included in this study. Karnofsky Performance Scale score > 70, smoking status, hypertension, thromboembolic events, hyperlipidemia, increasing number of vertebral levels, and posterior approach were included in the multivariate analysis. Thromboembolic events (95% CI 1.19–48.5, p = 0.032) and number of levels involved were independently associated with increased wound reoperation rates in the multivariate model. For each additional spinal level involved, the risk for wound reoperations increased by 21% (95% CI 1.03–1.43, p = 0.018).

CONCLUSIONS

Although wound complications and subsequent reoperations are potential risks for all patients with metastatic spine tumor, due to adjuvant radiotherapy and other medical comorbidities, this study identified patients with thromboembolic events or those requiring a larger incision as being at the highest risk. Measures intended to decrease the occurrence of perioperative venous thromboembolism and to improve wound care, especially for long incisions, may decrease wound-related revision surgeries in this vulnerable group of patients.

Full access

Seba Ramhmdani and Ali Bydon