Browse

You are looking at 1 - 10 of 45 items for

  • All content x
  • By Author: Bonfield, Christopher M. x
Clear All
Restricted access

Brooke Sadler, Alex Skidmore, Jordan Gewirtz, Richard C. E. Anderson, Gabe Haller, Laurie L. Ackerman, P. David Adelson, Raheel Ahmed, Gregory W. Albert, Philipp R. Aldana, Tord D. Alden, Christine Averill, Lissa C. Baird, David F. Bauer, Tammy Bethel-Anderson, Karin S. Bierbrauer, Christopher M. Bonfield, Douglas L. Brockmeyer, Joshua J. Chern, Daniel E. Couture, David J. Daniels, Brian J. Dlouhy, Susan R. Durham, Richard G. Ellenbogen, Ramin Eskandari, Herbert E. Fuchs, Timothy M. George, Gerald A. Grant, Patrick C. Graupman, Stephanie Greene, Jeffrey P. Greenfield, Naina L. Gross, Daniel J. Guillaume, Todd C. Hankinson, Gregory G. Heuer, Mark Iantosca, Bermans J. Iskandar, Eric M. Jackson, Andrew H. Jea, James M. Johnston, Robert F. Keating, Nickalus Khan, Mark D. Krieger, Jeffrey R. Leonard, Cormac O. Maher, Francesco T. Mangano, Timothy B. Mapstone, J. Gordon McComb, Sean D. McEvoy, Thanda Meehan, Arnold H. Menezes, Michael Muhlbauer, W. Jerry Oakes, Greg Olavarria, Brent R. O’Neill, John Ragheb, Nathan R. Selden, Manish N. Shah, Chevis N. Shannon, Jodi Smith, Matthew D. Smyth, Scellig S. D. Stone, Gerald F. Tuite, Scott D. Wait, John C. Wellons III, William E. Whitehead, Tae Sung Park, David D. Limbrick Jr., and Jennifer M. Strahle

OBJECTIVE

Scoliosis is common in patients with Chiari malformation type I (CM-I)–associated syringomyelia. While it is known that treatment with posterior fossa decompression (PFD) may reduce the progression of scoliosis, it is unknown if decompression with duraplasty is superior to extradural decompression.

METHODS

A large multicenter retrospective and prospective registry of 1257 pediatric patients with CM-I (tonsils ≥ 5 mm below the foramen magnum) and syrinx (≥ 3 mm in axial width) was reviewed for patients with scoliosis who underwent PFD with or without duraplasty.

RESULTS

In total, 422 patients who underwent PFD had a clinical diagnosis of scoliosis. Of these patients, 346 underwent duraplasty, 51 received extradural decompression alone, and 25 were excluded because no data were available on the type of PFD. The mean clinical follow-up was 2.6 years. Overall, there was no difference in subsequent occurrence of fusion or proportion of patients with curve progression between those with and those without a duraplasty. However, after controlling for age, sex, preoperative curve magnitude, syrinx length, syrinx width, and holocord syrinx, extradural decompression was associated with curve progression > 10°, but not increased occurrence of fusion. Older age at PFD and larger preoperative curve magnitude were independently associated with subsequent occurrence of fusion. Greater syrinx reduction after PFD of either type was associated with decreased occurrence of fusion.

CONCLUSIONS

In patients with CM-I, syrinx, and scoliosis undergoing PFD, there was no difference in subsequent occurrence of surgical correction of scoliosis between those receiving a duraplasty and those with an extradural decompression. However, after controlling for preoperative factors including age, syrinx characteristics, and curve magnitude, patients treated with duraplasty were less likely to have curve progression than patients treated with extradural decompression. Further study is needed to evaluate the role of duraplasty in curve stabilization after PFD.

Restricted access

Alan R. Tang, Rebecca A. Reynolds, Jonathan Dallas, Heidi Chen, E. Haley Vance, Christopher M. Bonfield, and Chevis N. Shannon

OBJECTIVE

Pediatric isolated linear skull fractures commonly result from head trauma and rarely require surgery, yet patients are often admitted to the hospital—a costly care plan. In this study, the authors utilized a national database to investigate trends in admission for skull fractures across the United States.

METHODS

Children younger than 18 years with isolated linear skull fracture, according to ICD-9 diagnosis codes in the Kids’ Inpatient Database of the Healthcare and Utilization Project (HCUP), who presented between 2003 and 2016 were included. HCUP collected data in 2003, 2006, 2009, 2012, and 2016. Children with a depressed skull fracture, multiple traumatic injuries, and acute intracranial findings were excluded. Sample-level data were translated into population-level data by using an HCUP-specific discharge weight.

RESULTS

Overall, 11,355 patients (64% males) were admitted to 1605 hospitals. National admissions decreased from 3053 patients in 2003 to 1203 in 2016. The mean ± SD age at admission also decreased from 6.3 ± 5.9 years to 1.2 ± 3.0 years (p < 0.001). The proportion of patients in the lowest quartile of median household income increased by 9%, while that in the highest income quartile decreased by 7% (p < 0.001). Admission was generally more common in the summer months (June, July, and August) and on weekdays (68%). The mean ± SD hospital length of stay decreased from 2.0 ± 3.1 days to 1.4 ± 1.4 days between 2003 and 2012, and then increased to 2.1 ± 6.8 days in 2016 (p < 0.001). When adjusted for inflation, the mean total hospital charges increased from $13,099 to $21,204 (p < 0.001). The greatest proportion of admissions was in the South (35%), and the lowest was in the Northeast (17%). The proportion of patients admitted to large hospitals increased (59% to 72%, p < 0.001), which corresponded to a decrease in patients admitted to small hospitals (16% to 9%, p < 0.001). Overall, the total proportion of admissions to rural hospitals decreased by 6%, and that to urban teaching centers increased by 15% (p < 0.001). Since 2003, no child has undergone a neurosurgical procedure or died as an inpatient.

CONCLUSIONS

This study identified a general nationwide decrease in admissions for pediatric linear isolated skull fracture, but associated costs increased. Admissions became less common at smaller rural hospitals and more common at larger urban teaching hospitals. This patient population required no inpatient neurosurgical intervention after 2003.

Restricted access

Nikita G. Alexiades, Belinda Shao, Bruno P. Braga, Christopher M. Bonfield, Douglas L. Brockmeyer, Samuel R. Browd, Michael DiLuna, Mari L. Groves, Todd C. Hankinson, Andrew Jea, Jeffrey R. Leonard, Sean M. Lew, David D. Limbrick Jr., Francesco T. Mangano, Jonathan Martin, Joshua Pahys, Alexander Powers, Mark R. Proctor, Luis Rodriguez, Curtis Rozzelle, Phillip B. Storm, and Richard C. E. Anderson

OBJECTIVE

Cervical traction in pediatric patients is an uncommon but invaluable technique in the management of cervical trauma and deformity. Despite its utility, little empirical evidence exists to guide its implementation, with most practitioners employing custom or modified adult protocols. Expert-based best practices may improve the care of children undergoing cervical traction. In this study, the authors aimed to build consensus and establish best practices for the use of pediatric cervical traction in order to enhance its utilization, safety, and efficacy.

METHODS

A modified Delphi method was employed to try to identify areas of consensus regarding the utilization and implementation of pediatric cervical spine traction. A literature review of pediatric cervical traction was distributed electronically along with a survey of current practices to a group of 20 board-certified pediatric neurosurgeons and orthopedic surgeons with expertise in the pediatric cervical spine. Sixty statements were then formulated and distributed to the group. The results of the second survey were discussed during an in-person meeting leading to further consensus. Consensus was defined as ≥ 80% agreement on a 4-point Likert scale (strongly agree, agree, disagree, strongly disagree).

RESULTS

After the initial round, consensus was achieved with 40 statements regarding the following topics: goals, indications, and contraindications of traction (12), pretraction imaging (6), practical application and initiation of various traction techniques (8), protocols in trauma and deformity patients (8), and management of traction-related complications (6). Following the second round, an additional 9 statements reached consensus related to goals/indications/contraindications of traction (4), related to initiation of traction (4), and related to complication management (1). All participants were willing to incorporate the consensus statements into their practice.

CONCLUSIONS

In an attempt to improve and standardize the use of cervical traction in pediatric patients, the authors have identified 49 best-practice recommendations, which were generated by reaching consensus among a multidisciplinary group of pediatric spine experts using a modified Delphi technique. Further study is required to determine if implementation of these practices can lead to reduced complications and improved outcomes for children.

Free access

Christopher M. Bonfield, Chevis N. Shannon, Ron W. Reeder, Samuel Browd, James Drake, Jason S. Hauptman, Abhaya V. Kulkarni, David D. Limbrick Jr., Patrick J. McDonald, Robert Naftel, Ian F. Pollack, Jay Riva-Cambrin, Curtis Rozzelle, Mandeep S. Tamber, William E. Whitehead, John R. W. Kestle, John C. Wellons III, and for the Hydrocephalus Clinical Research Network (HCRN)

OBJECTIVE

Hydrocephalus may be seen in patients with multisuture craniosynostosis and, less commonly, single-suture craniosynostosis. The optimal treatment for hydrocephalus in this population is unknown. In this study, the authors aimed to evaluate the success rate of ventriculoperitoneal shunt (VPS) treatment and endoscopic third ventriculostomy (ETV) both with and without choroid plexus cauterization (CPC) in patients with craniosynostosis.

METHODS

Utilizing the Hydrocephalus Clinical Research Network (HCRN) Core Data Project (Registry), the authors identified all patients who underwent treatment for hydrocephalus associated with craniosynostosis. Descriptive statistics, demographics, and surgical outcomes were evaluated.

RESULTS

In total, 42 patients underwent treatment for hydrocephalus associated with craniosynostosis. The median gestational age at birth was 39.0 weeks (IQR 38.0, 40.0); 55% were female and 60% were White. The median age at first craniosynostosis surgery was 0.6 years (IQR 0.3, 1.7), and at the first permanent hydrocephalus surgery it was 1.2 years (IQR 0.5, 2.5). Thirty-three patients (79%) had multiple different sutures fused, and 9 had a single suture: 3 unicoronal (7%), 3 sagittal (7%), 2 lambdoidal (5%), and 1 unknown (2%). Syndromes were identified in 38 patients (90%), with Crouzon syndrome being the most common (n = 16, 42%). Ten patients (28%) received permanent hydrocephalus surgery before the first craniosynostosis surgery. Twenty-eight patients (67%) underwent VPS treatment, with the remaining 14 (33%) undergoing ETV with or without CPC (ETV ± CPC). Within 12 months after initial hydrocephalus intervention, 14 patients (34%) required revision (8 VPS and 6 ETV ± CPC). At the most recent follow-up, 21 patients (50%) required a revision. The revision rate decreased as age increased. The overall infection rate was 5% (VPS 7%, 0% ETV ± CPC).

CONCLUSIONS

This is the largest prospective study reported on children with craniosynostosis and hydrocephalus. Hydrocephalus in children with craniosynostosis most commonly occurs in syndromic patients and multisuture fusion. It is treated at varying ages; however, most patients undergo surgery for craniosynostosis prior to hydrocephalus treatment. While VPS treatment is performed more frequently, VPS and ETV are both reasonable options, with decreasing revision rates with increasing age, for the treatment of hydrocephalus associated with craniosynostosis.

Free access

Aaron M. Yengo-Kahn, Oluwatoyin Akinnusotu, Alyssa L. Wiseman, Muhammad Owais Abdul Ghani, Chevis N. Shannon, Michael S. Golinko, and Christopher M. Bonfield

OBJECTIVE

Craniosynostosis (CS) affects about 1 in 2500 infants and is predominantly treated by surgical intervention in infancy. Later in childhood, many of these children wish to participate in sports. However, the safety of participation is largely anecdotal and based on surgeon experience. The objective of this survey study was to describe sport participation and sport-related head injury in CS patients.

METHODS

A 16-question survey related to child/parent demographics, CS surgery history, sport history, and sport-induced head injury history was made available to patients/parents in the United States through a series of synostosis organization listservs, as well as synostosis-focused Facebook groups, between October 2019 and June 2020. Sports were categorized based on the American Academy of Pediatrics groupings. Pearson’s chi-square test, Fisher’s exact test, and the independent-samples t-test were used in the analysis.

RESULTS

Overall, 187 CS patients were described as 63% male, 89% White, and 88% non-Hispanic, and 89% underwent surgery at 1 year or younger. The majority (74%) had participated in sports starting at an average age of 5 years (SD 2.2). Of those participating in sports, contact/collision sport participation was most common (77%), and 71% participated in multiple sports. Those that played sports were less frequently Hispanic (2.2% vs 22.9%, p < 0.001) and more frequently had undergone a second surgery (44% vs 25%, p = 0.021). Only 9 of 139 (6.5%) sport-participating CS patients suffered head injuries; 6 (67%) were concussions and the remaining 3 were nondescript but did not mention any surgical needs.

CONCLUSIONS

In this nationwide survey of postsurgical CS patients and parents, sport participation was exceedingly common, with contact sports being the most common sport category. Few head injuries (mostly concussions) were reported as related to sport participation. Although this is a selective sample of CS patients, the initial data suggest that sport participation, even in contact sports, and typically beginning a few years after CS correction, is safe and commonplace.

Free access

Patrick D. Kelly, Pious D. Patel, Aaron M. Yengo-Kahn, Daniel I. Wolfson, Fakhry Dawoud, Ranbir Ahluwalia, Oscar D. Guillamondegui, and Christopher M. Bonfield

OBJECTIVE

Several scores estimate the prognosis for gunshot wounds to the head (GSWH) at the point of hospital admission. However, prognosis may change over the course of the hospital stay. This study measures the accuracy of the Baylor score among patients who have already survived the acute phase of hospitalization and generates conditional outcome curves for the duration of hospital stay for patients with GSWH.

METHODS

Patients in whom GSWH with dural penetration occurred between January 2009 and June 2019 were identified from a trauma registry at a level I trauma center in the southeastern US. The Baylor score was calculated using component variables. Conditional overall survival and good functional outcome (Glasgow Outcome Scale score of 4 or 5) curves were generated. The accuracy of the Baylor score in predicting mortality and functional outcome among acute-phase survivors (survival > 48 hours) was assessed using receiver operating characteristic curves and the area under the curve (AUC).

RESULTS

A total of 297 patients were included (mean age 38.0 [SD 15.7] years, 73.4% White, 85.2% male), and 129 patients survived the initial 48 hours of admission. These acute-phase survivors had a decreased mortality rate of 32.6% (n = 42) compared to 68.4% (n = 203) for all patients, and an increased rate of good functional outcome (48.1%; n = 62) compared to the rate for all patients (23.2%; n = 69). Among acute-phase survivors, the Baylor score accurately predicted mortality (AUC = 0.807) and functional outcome (AUC = 0.837). However, the Baylor score generally overestimated true mortality rates and underestimated good functional outcome. Additionally, hospital day 18 represented an inflection point of decreasing probability of good functional outcome.

CONCLUSIONS

During admission for GSWH, surviving beyond the acute phase of 48 hours doubles the rates of survival and good functional outcome. The Baylor score maintains reasonable accuracy in predicting these outcomes for acute-phase survivors, but generally overestimates mortality and underestimates good functional outcome. Future prognostic models should incorporate conditional survival to improve the accuracy of prognostication after the acute phase.

Free access

Aaron M. Yengo-Kahn, Pious D. Patel, Patrick D. Kelly, Daniel I. Wolfson, Fakhry Dawoud, Ranbir Ahluwalia, Christopher M. Bonfield, and Oscar D. Guillamondegui

OBJECTIVE

Gunshot wounds to the head (GSWH) are devastating injuries with a grim prognosis. Several prognostic scores have been created to estimate mortality and functional outcome, including the so-called Baylor score, an uncomplicated scoring method based on bullet trajectory, patient age, and neurological status on admission. This study aimed to validate the Baylor score within a temporally, institutionally, and geographically distinct patient population.

METHODS

Data were obtained from the trauma registry at a level I trauma center in the southeastern US. Patients with a GSWH in which dural penetration occurred were identified from data collected between January 1, 2009, and June 30, 2019. Patient demographics, medical history, bullet trajectory, intent of GSWH (e.g., suicide), admission vital signs, Glasgow Coma Scale score, pupillary response, laboratory studies, and imaging reports were collected. The Baylor score was calculated directly by using its clinical components. The ability of the Baylor score to predict mortality and good functional outcome (Glasgow Outcome Scale score 4 or 5) was assessed using the receiver operating characteristic curve and the area under the curve (AUC) as a measure of performance.

RESULTS

A total of 297 patients met inclusion criteria (mean age 38.0 [SD 15.7] years, 73.4% White, 85.2% male). A total of 205 (69.0%) patients died, whereas 69 (23.2%) patients had good functional outcome. Overall, the Baylor score showed excellent discrimination of mortality (AUC = 0.88) and good functional outcome (AUC = 0.90). Baylor scores of 3–5 underestimated mortality. Baylor scores of 0, 1, and 2 underestimated good functional outcome.

CONCLUSIONS

The Baylor score is an accurate and easy-to-use prognostic scoring tool that demonstrated relatively stable performance in a distinct cohort between 2009 and 2019. In the current era of trauma management, providers may continue to use the score at the point of admission to guide family counseling and to direct investment of healthcare resources.

Restricted access

Rebecca A. Reynolds, Makayla Dixon, Stephen Gannon, CCRP, Shilin Zhao, Christopher M. Bonfield, Robert P. Naftel, John C. Wellons III, and Chevis N. Shannon

OBJECTIVE

Parent or guardian involvement is implicit in the care of pediatric patients with hydrocephalus. Some parents and guardians are more engaged than others. The relationship between socioeconomic status (SES), the level of parental concern about their child’s hydrocephalus management and future, and overall health status has not been clearly delineated. In this study, the authors sought to clarify this connection using hydrocephalus patient-reported health outcomes.

METHODS

This cross-sectional study included children with surgically managed hydrocephalus whose parent or guardian completed the validated Hydrocephalus Outcome Questionnaire (HOQ) and Hydrocephalus Concern Questionnaire for parents (HCQ-P) on a return visit to the pediatric neurosurgery clinic at Vanderbilt University Medical Center between 2016 and 2018. Patients were excluded if the questionnaires were not completed in full. The calculated Overall Health Score (OHS) was used to represent the child’s global physical, emotional, cognitive, and social health. The HCQ-P was used to assess parental concern about their child. Type of insurance was a proxy for SES.

RESULTS

The HOQ and HCQ-P were administered and completed in full by 170 patient families. In the cohort, 91% of patients (n = 155) had shunt-treated hydrocephalus, and the remaining patients had undergone endoscopic third ventriculostomy. The mean (± SD) patient age was 12 ± 4 years. Half of the patients were male (n = 90, 53%), and most were Caucasian (n = 134, 79%). One in four patients lived in single-parent homes or with a designated guardian (n = 45, 26%). Public insurance and self-pay accounted for 38% of patients (n = 64), while the remaining 62% had private or military insurance. In general, parents with higher concern about their child’s medical condition indicated that their son or daughter had a higher OHS (χ2 = 17.07, p < 0.001). Patients in families with a lower SES did not have different OHSs from those with a higher SES (χ2 = 3.53, p = 0.06). However, parents with a lower SES were more worried about management of their child’s hydrocephalus and their child’s future success (χ2 = 11.49, p < 0.001). In general, parents were not preoccupied with one particular aspect of their child’s hydrocephalus management.

CONCLUSIONS

More engaged parents, regardless of their family’s SES, reported a better OHS for their child. Parents with public or self-paid insurance were more likely to report higher concern about their child’s hydrocephalus and future, but this was not associated with a difference in their child’s current health status.

Free access

Jarrett Foster, Ranbir Ahluwalia, Madeleine Sherburn, Katherine Kelly, Georgina E. Sellyn, Chelsea Kiely, Alyssa L. Wiseman, Stephen Gannon, Chevis N. Shannon, and Christopher M. Bonfield

OBJECTIVE

No study has established a relationship between cranial deformations and demographic factors. While the connection between the Back to Sleep campaign and cranial deformation has been outlined, considerations toward cultural or anthropological differences should also be investigated.

METHODS

The authors conducted a retrospective review of 1499 patients (age range 2 months to less than 19 years) who presented for possible trauma in 2018 and had a negative CT scan. The cranial vault asymmetry index (CVAI) and cranial index (CI) were used to evaluate potential cranial deformations. The cohort was evaluated for differences between sex, race, and ethnicity among 1) all patients and 2) patients within the clinical treatment window (2–24 months of age). Patients categorized as “other” and those for whom data were missing were excluded from analysis.

RESULTS

In the CVAI cohort with available data (n = 1499, although data were missing for each variable), 800 (56.7%) of 1411 patients were male, 1024 (79%) of 1304 patients were Caucasian, 253 (19.4%) of 1304 patients were African American, and 127 (10.3%) of 1236 patients were of Hispanic/Latin American descent. The mean CVAI values were significantly different between sex (p < 0.001) and race (p < 0.001). However, only race was associated with differences in positional posterior plagiocephaly (PPP) diagnosis (p < 0.001). There was no significant difference in CVAI measurements for ethnicity (p = 0.968). Of the 520 patients in the treatment window cohort, 307 (59%) were male. Of the 421 patients with data for race, 334 were Caucasian and 80 were African American; 47 of the 483 patients with ethnicity data were of Hispanic/Latin American descent. There were no differences between mean CVAI values for sex (p = 0.404) or ethnicity (p = 0.600). There were significant differences between the mean CVAI values for Caucasian and African American patients (p < 0.001) and rate of PPP diagnosis (p = 0.02). In the CI cohort with available data (n = 1429, although data were missing for each variable), 849 (56.8%) of 1494 patients were male, 1007 (67.4%) of 1283 were Caucasian, 248 (16.6%) of 1283 were African American, and 138 patients with ethnicity data (n = 1320) of Hispanic/Latin American descent. Within the clinical treatment window cohort with available data, 373 (59.2%) of 630 patients were male, 403 were Caucasian (81.9%), 84 were African American (17.1%), and 55 (10.5%) of 528 patients were of Hispanic/Latin American descent. The mean CI values were not significantly different between sexes (p = 0.450) in either cohort. However, there were significant differences between CI measurements for Caucasian and African American patients (p < 0.001) as well as patients of Hispanic/Latin American descent (p < 0.001) in both cohorts.

CONCLUSIONS

The authors found no significant associations between cranial deformations and sex. However, significant differences exist between Caucasian and African American patients as well as patients with Hispanic/Latin American heritage. These findings suggest cultural or anthropological influences on defining skull deformations. Further investigation into the factors contributing to these differences should be undertaken.

Free access

Ranbir Ahluwalia, Jarrett Foster, Madeleine M. Sherburn, Georgina E. Sellyn, Katherine A. Kelly, Muhammad Owais Abdul Ghani, Alyssa L. Wiseman, Chevis N. Shannon, and Christopher M. Bonfield

OBJECTIVE

The incidence of deformational brachycephaly has risen since the “Back to Sleep” movement in 1992 by the American Academy of Pediatrics. Brachycephaly prevalence and understanding the dynamic nature of the pediatric skull have not been explored in relation to the cranial index (CI). The objective of the study was to determine the prevalence of brachycephaly, via the CI, with respect to time.

METHODS

The authors conducted a retrospective review of 1499 patients ≤ 19 years of age who presented for trauma evaluation with a negative CT scan for trauma (absence of bleed) in 2018. The CI was calculated using CT at the lateral-most point of the parietal bone (cephalic width), and the distance from the glabella to the opisthocranion (cephalic length). Brachycephaly was defined as a CI ≥ 90%.

RESULTS

The mean CI was 82.6, with an average patient age of 6.8 years. The prevalence of deformational brachycephaly steadily decreased from 27% to 4% from birth to > 2 years of life. The mean CI was statistically different between ages < 12 months, 12–24 months, and > 24 months (F[2,1496] = 124.058, p < 0.0005). A simple linear regression was calculated to predict the CI based on age; the CI was found to decrease by 0.038 each month. A significant regression equation was found (F[1,1497] = 296.846, p < 0.0005), with an R2 of 0.140.

CONCLUSIONS

The incidence of deformational brachycephaly is common in infants but decreases as the child progresses through early childhood. Clinicians can expect a significant decrease in mean CI at 12 and 24 months. Additionally, these regression models show that clinicians can expect continued improvement throughout childhood.