You are looking at 1 - 2 of 2 items for

  • User-accessible content x
  • By Author: Preul, Mark C. x
  • By Author: Agrawal, Abhishek x
Clear All
Full access

Ali M. Elhadi, Samuel Kalb, Nikolay L. Martirosyan, Abhishek Agrawal and Mark C. Preul

Within a few months of Wilhelm Conrad Röntgen's discovery of x-rays in 1895, Fedor Krause acquired an x-ray apparatus and began to use it in his daily interactions with patients and for diagnosis. He was the first neurosurgeon to use x-rays methodically and systematically. In 1908 Krause published the first volume of text on neurosurgery, Chirurgie des Gehirns und Rückenmarks (Surgery of the Brain and Spinal Cord), which was translated into English in 1909. The second volume followed in 1911. This was the first published multivolume text totally devoted to neurosurgery. Although Krause excelled in and promoted neurosurgery, he believed that surgeons should excel at general surgery. Importantly, Krause was inclined to adopt technology that he believed could be helpful in surgery. His 1908 text was the first neurosurgical text to contain a specific chapter on x-rays (“Radiographie”) that showed roentgenograms of neurosurgical procedures and pathology. After the revolutionary discovery of x-rays by Röntgen, many prominent neurosurgeons seemed pessimistic about the use of x-rays for anything more than trauma or fractures. Krause immediately seized on its use to guide and monitor ventricular drainage and especially for the diagnosis of tumors of the skull base. The x-ray images contained in Krause's “Radiographie” chapter provide a seminal view into the adoption of new technology and the development of neurosurgical technique and are part of neurosurgery's heritage.

Full access

Ulises García-González, Daniel D. Cavalcanti, Abhishek Agrawal, L. Fernando Gonzalez, Robert C. Wallace, Robert F. Spetzler and Mark C. Preul


There are few systematic investigations of the dissected surgical anatomy of the diploic venous system (DVS) in the neuroanatomical literature. The authors describe the DVS relative to different common neurosurgical approaches. Knowledge of this system can help avoid potential sources of unacceptable bleeding and may impact healing of the cranium.


Using a high-speed drill with a 2-mm bit, the authors removed the outer layer of the compact bone in the skull to expose the DVS in 12 formalin-fixed cadaver heads. Pterional, supraorbital, and modified orbitozygomatic craniotomies were performed to delineate the relationship of the DVS.


The draining point of the frontal diploic vein (FDV) was located near the supraorbital notch. The draining point of the anterior temporal diploic vein (ATDV) was located in all pterional areas; the draining point of the posterior temporal diploic vein (PTDV) was located in all asterional areas. The PTDV was the dominant diploic vessel in all sides. The FDV and ATDV could be damaged during supraorbital, modified orbitozygomatic, and pterional craniotomies. The anterior DVS connected with the sphenoparietal and superior sagittal sinus (SSS). The posterior DVS connected with the transverse and sigmoid sinuses and was the dominant diploic vessel in all 24 sides. Of all the major diploic vessels, the location and pattern of distribution of the FDV were the most constant. The parietal bone contained the most diploic vessels. No diploic veins were found in the area delimited by the temporal squama.


The pterional, orbitozygomatic, and supraorbital approaches place the FDV and ATDV at risk. The major anterior diploic system connects the SSS with the sphenoparietal sinus. The posterior diploic system connects the SSS with the transverse and sigmoid sinuses.