You are looking at 1 - 2 of 2 items for

  • Refine by Access: user x
  • By Author: Poliakov, Andrew V. x
  • By Author: Ojemann, Jeffrey G. x
  • By Author: Poliachik, Sandra L. x
Clear All
Full access

Fabio Grassia, Andrew V. Poliakov, Sandra L. Poliachik, Kaitlyn Casimo, Seth D. Friedman, Hillary Shurtleff, Carlo Giussani, Edward J. Novotny Jr., Jeffrey G. Ojemann, and Jason S. Hauptman


Functional connectivity magnetic resonance imaging (fcMRI) is a form of fMRI that allows for analysis of blood oxygen level–dependent signal changes within a task-free, resting paradigm. This technique has been shown to have efficacy in evaluating network connectivity changes with epilepsy. Presurgical data from patients with unilateral temporal lobe epilepsy were evaluated using the fcMRI technique to define connectivity changes within and between the diseased and healthy temporal lobes using a within-subjects design.


Using presurgical fcMRI data from pediatric patients with unilateral temporal lobe epilepsy, the authors performed seed-based analyses within the diseased and healthy temporal lobes. Connectivity within and between temporal lobe seeds was measured and compared.


In the cohort studied, local ipsilateral temporal lobe connectivity was significantly increased on the diseased side compared to the healthy temporal lobe. Connectivity of the diseased side to the healthy side, on the other hand, was significantly reduced when compared to connectivity of the healthy side to the diseased temporal lobe. A statistically significant regression was observed when comparing the changes in local ipsilateral temporal lobe connectivity to the changes in inter–temporal lobe connectivity. A statistically significant difference was also noted in ipsilateral connectivity changes between patients with and those without mesial temporal sclerosis.


Using fcMRI, significant changes in ipsilateral temporal lobe and inter–temporal lobe connectivity can be appreciated in unilateral temporal lobe epilepsy. Furthermore, fcMRI may have a role in the presurgical evaluation of patients with intractable temporal lobe epilepsy.

Free access

Sandra L. Poliachik, Andrew V. Poliakov, Laura A. Jansen, Sharon S. McDaniel, Carter D. Wray, John Kuratani, Russell P. Saneto, Jeffrey G. Ojemann, and Edward J. Novotny Jr


Imaging-guided surgery (IGS) systems are widely used in neurosurgical practice. During epilepsy surgery, the authors routinely use IGS landmarks to localize intracranial electrodes and/or specific brain regions. The authors have developed a technique to coregister these landmarks with pre- and postoperative scans and the Montreal Neurological Institute (MNI) standard space brain MRI to allow 1) localization and identification of tissue anatomy; and 2) identification of Brodmann areas (BAs) of the tissue resected during epilepsy surgery. Tracking tissue in this fashion allows for better correlation of patient outcome to clinical factors, functional neuroimaging findings, and pathological characteristics and molecular studies of resected tissue.


Tissue samples were collected in 21 patients. Coordinates from intraoperative tissue localization were downloaded from the IGS system and transformed into patient space, as defined by preoperative high-resolution T1-weighted MRI volume. Tissue landmarks in patient space were then transformed into MNI standard space for identification of the BAs of the tissue samples.


Anatomical locations of resected tissue were identified from the intraoperative resection landmarks. The BAs were identified for 17 of the 21 patients. The remaining patients had abnormal brain anatomy that could not be meaningfully coregistered with the MNI standard brain without causing extensive distortion.


This coregistration and landmark tracking technique allows localization of tissue that is resected from patients with epilepsy and identification of the BAs for each resected region. The ability to perform tissue localization allows investigators to relate preoperative, intraoperative, and postoperative functional and anatomical brain imaging to better understand patient outcomes, improve patient safety, and aid in research.