You are looking at 1 - 3 of 3 items for

  • User-accessible content x
  • By Author: Mundis, Gregory M. x
  • By Author: Kebaish, Khaled M. x
Clear All
Free access

David B. Bumpass, Lawrence G. Lenke, Jeffrey L. Gum, Christopher I. Shaffrey, Justin S. Smith, Christopher P. Ames, Shay Bess, Brian J. Neuman, Eric Klineberg, Gregory M. Mundis Jr., Frank Schwab, Virginie Lafage, Han Jo Kim, Douglas C. Burton, Khaled M. Kebaish, Richard Hostin, Renaud Lafage, Michael P. Kelly and for the International Spine Study Group


Adolescent spine deformity studies have shown that male patients require longer surgery and have greater estimated blood loss (EBL) and complications compared with female patients. No studies exist to support this relationship in adult spinal deformity (ASD). The purpose of this study was to investigate associations between sex and complications, deformity correction, and health-related quality of life (HRQOL) in patients with ASD. It was hypothesized that male ASD patients would have greater EBL, longer surgery, and more complications than female ASD patients.


A multicenter ASD cohort was retrospectively queried for patients who underwent primary posterior-only instrumented fusions with a minimum of 5 levels fused. The minimum follow-up was 2 years. Primary outcomes were EBL, operative time, intra-, peri-, and postoperative complications, radiographic correction, and HRQOL outcomes (Oswestry Disability Index, SF-36, and Scoliosis Research Society-22r Questionnaire). Poisson multivariate regression was used to control for age, comorbidities, and levels fused.


Ninety male and 319 female patients met the inclusion criteria. Male patients had significantly greater mean EBL (2373 ml vs 1829 ml, p = 0.01). The mean operative time, transfusion requirements, and final radiographic measurements did not differ between sexes. Similarly, changes in HRQOL showed no significant differences. Finally, there were no sex differences in the incidence of complications (total, major, or minor) at any time point after controlling for age, body mass index, comorbidities, and levels fused.


Despite higher EBL, male ASD patients did not experience more complications or require less deformity correction at the 2-year follow-up. HRQOL scores similarly showed no sex differences. These findings differ from adolescent deformity studies, and surgeons can counsel patients that sex is unlikely to influence the outcomes and complication rates of primary all-posterior ASD surgery.

Full access

Justin K. Scheer, Virginie Lafage, Justin S. Smith, Vedat Deviren, Richard Hostin, Ian M. McCarthy, Gregory M. Mundis, Douglas C. Burton, Eric Klineberg, Munish C. Gupta, Khaled M. Kebaish, Christopher I. Shaffrey, Shay Bess, Frank Schwab, Christopher P. Ames and the International Spine Study Group (ISSG)


Spinal osteotomies for adult spinal deformity correction may include resection of all 3 spinal columns (pedicle subtraction osteotomy [PSO] and vertebral column resection [VCR]). The relationship between patient age and health-related quality of life (HRQOL) outcomes for patients undergoing major spinal deformity correction via PSO or VCR has not been well characterized. The goal of this study was to characterize that relationship.


This study was a retrospective review of 374 patients who had undergone a 3-column osteotomy (299 PSOs and 75 VCRs) and were part of a prospectively collected, multicenter adult spinal deformity database. The consecutively enrolled patients were drawn from 11 sites across the United States. Health-related QOL outcomes, according to the visual analog scale (VAS), Oswestry Disability Index (ODI), 36-Item Short-Form Health Survey (SF-36, physical component score [PCS] and mental component score), and Scoliosis Research Society-22 questionnaire (SRS), were evaluated preoperatively and 1 and 2 years postoperatively. Differences and correlations between patient age and HRQOL outcomes were investigated. Age groupings included young (age ≤ 45 years), middle aged (age 46–64 years), and elderly (age ≥ 65 years).


In patients who had undergone PSO, age significantly correlated (Spearman's correlation coefficient) with the 2-year ODI (ρ = 0.24, p = 0.0450), 2-year SRS function score (ρ = 0.30, p = 0.0123), and 2-year SRS total score (ρ = 0.30, p = 0.0133). Among all patients (PSO+VCR), the preoperative PCS and ODI in the young group were significantly higher and lower, respectively, than those in the elderly. Among the PSO patients, the elderly group had much greater improvement than the young group in the 1- and 2-year PCS, 2-year ODI, and 2-year SRS function and total scores. Among the VCR patients, the young age group had much greater improvement than the elderly in the 1-year SRS pain score, 1-year PCS, 2-year PCS, and 2-year ODI. There was no significant difference among all the age groups as regards the likelihood of reaching a minimum clinically important difference (MCID) within each of the HRQOL outcomes (p > 0.05 for all). Among the PSO patients, the elderly group was significantly more likely than the young to reach an MCID for the 1-year PCS (61% vs 21%, p = 0.0077) and the 2-year PCS (67% vs 17%, p = 0.0054), SRS pain score (57% vs 20%, p = 0.0457), and SRS function score (62% vs 20%, p = 0.0250). Among the VCR patients, the young group was significantly more likely than the elderly patients to reach an MCID for the 1-year (100% vs 20%, p = 0.0036) and 2-year (100% vs 0%, p = 0.0027) PCS scores and 1-year (60% vs 0%, p = 0.0173) and 2-year (70% vs 0%, p = 0.0433) SRS pain scores.


The PSO and VCR are not equivalent surgeries in terms of HRQOL outcomes and patient age. Among patients who underwent PSO, the elderly group started with more preoperative disability than the younger patients but had greater improvements in HRQOL outcomes and was more likely to reach an MCID at 1 and 2 years after treatment. Among those who underwent VCR, all had similar preoperative disabilities, but the younger patients had greater improvements in HRQOL outcomes and were more likely to reach an MCID at 1 and 2 years after treatment.

Free access

Justin K. Scheer, Jessica A. Tang, Justin S. Smith, Eric Klineberg, Robert A. Hart, Gregory M. Mundis Jr., Douglas C. Burton, Richard Hostin, Michael F. O'Brien, Shay Bess, Khaled M. Kebaish, Vedat Deviren, Virginie Lafage, Frank Schwab, Christopher I. Shaffrey, Christopher P. Ames and the International Spine Study Group


Complications and reoperation for surgery to correct adult spinal deformity are not infrequent, and many studies have analyzed the rates and factors that influence the likelihood of reoperation. However, there is a need for more comprehensive analyses of reoperation in adult spinal deformity surgery from a global standpoint, particularly focusing on the 1st year following operation and considering radiographic parameters and the effects of reoperation on health-related quality of life (HRQOL). This study attempts to determine the prevalence of reoperation following surgery for adult spinal deformity, assess the indications for these reoperations, evaluate for a relation between specific radiographic parameters and the need for reoperation, and determine the potential impact of reoperation on HRQOL measures.


A retrospective review was conducted of a prospective, multicenter, adult spinal deformity database collected through the International Spine Study Group. Data collected included age, body mass index, sex, date of surgery, information regarding complications, reoperation dates, length of stay, and operation time. The radiographic parameters assessed were total number of levels instrumented, total number of interbody fusions, C-7 sagittal vertical axis, uppermost instrumented vertebra (UIV) location, and presence of 3-column osteotomies. The HRQOL assessment included Oswestry Disability Index (ODI), 36-Item Short Form Health Survey physical component and mental component summary, and SRS-22 scores. Smoking history, Charlson Comorbidity Index scores, and American Society of Anesthesiologists Physical Status classification grades were also collected and assessed for correlation with risk of early reoperation. Various statistical tests were performed for evaluation of specific factors listed above, and the level of significance was set at p < 0.05.


Fifty-nine (17%) of a total of 352 patients required reoperation. Forty-four (12.5%) of the reoperations occurred within 1 year after the initial surgery, including 17 reoperations (5%) within 30 days.

Two hundred sixty-eight patients had a minimum of 1 year of follow-up. Fifty-three (20%) of these patients had a 3-column osteotomy, and 10 (19%) of these 53 required reoperation within 1 year of the initial procedure. However, 3-column osteotomy was not predictive of reoperation within 1 year, p = 0.5476). There were no significant differences between groups with regard to the distribution of UIV, and UIV did not have a significant effect on reoperation rates. Patients needing reoperation within 1 year had worse ODI and SRS-22 scores measured at 1-year follow-up than patients not requiring operation.


Analysis of data from a large multicenter adult spinal deformity database shows an overall 17% reoperation rate, with a 19% reoperation rate for patients treated with 3-column osteotomy and a 16% reoperation rate for patients not treated with 3-column osteotomy. The most common indications for reoperation included instrumentation complications and radiographic failure. Reoperation significantly affected HRQOL outcomes at 1-year follow-up. The need for reoperation may be minimized by carefully considering spinal alignment, termination of fixation, and type of surgical procedure (presence of osteotomy). Precautions should be taken to avoid malposition or instrumentation (rod) failure.