Browse

You are looking at 1 - 10 of 89 items for

  • Refine by Access: user x
  • By Author: Kondziolka, Douglas x
Clear All
Open access

Assaf Berger, Kristyn Galbraith, Matija Snuderl, John G. Golfinos, and Douglas Kondziolka

BACKGROUND

Late pathology after vestibular schwannoma radiosurgery is uncommon. The authors presented a case of a resected hemorrhagic mass 13 years after radiosurgery, when no residual tumor was found.

OBSERVATIONS

A 56-year-old man with multiple comorbidities, including myelodysplastic syndrome cirrhosis, received Gamma Knife surgery for a left vestibular schwannoma. After 11 years of stable imaging assessments, the lesion showed gradual growth until a syncopal event occurred 2 years later, accompanied by progressive facial weakness and evidence of intralesional hemorrhage, which led to resection. However, histopathological analysis of the resected specimen showed hemorrhage and reactive tissue but no definitive residual tumor.

LESSONS

This case demonstrated histopathological evidence for the role of radiosurgery in complete elimination of tumor tissue. Radiosurgery for vestibular schwannoma carries a rare risk for intralesional hemorrhage in select patients.

Restricted access

Carolina Gesteira Benjamin, Jason Gurewitz, Ami Kavi, Kenneth Bernstein, Joshua Silverman, Monica Mureb, Bernadine Donahue, and Douglas Kondziolka

OBJECTIVE

In the era in which more patients with greater numbers of brain metastases (BMs) are being treated with stereotactic radiosurgery (SRS) alone, it is critical to understand how patient, tumor, and treatment factors affect functional status and overall survival (OS). The authors examined the survival outcomes and dosimetry to critical structures in patients treated with Gamma Knife radiosurgery (GKRS) for ≥ 25 metastases in a single session or cumulatively over the course of their disease.

METHODS

A retrospective analysis was conducted at a single institution. The institution’s prospective Gamma Knife (GK) SRS registry was queried to identify patients treated with GKRS for ≥ 25 cumulative BMs between June 2013 and April 2020. Ninety-five patients were identified, and their data were used for analysis. Treatment plans for dosimetric analysis were available for 89 patients. Patient, tumor, and treatment characteristics were identified, and outcomes and OS were evaluated.

RESULTS

The authors identified 1132 patients with BMs in their institutional registry. Ninety-five patients were treated for ≥ 25 cumulative metastases, resulting in a total of 3596 tumors treated during 373 separate treatment sessions. The median number of SRS sessions per patient was 3 (range 1–12 SRS sessions), with nearly all patients (n = 93, 98%) having > 1 session. On univariate analysis, factors affecting OS in a statistically significant manner included histology, tumor volume, tumor number, diagnosis-specific graded prognostic assessment (DS-GPA), brain metastasis velocity (BMV), and need for subsequent whole-brain radiation therapy (WBRT). The median of the mean WB dose was 4.07 Gy (range 1.39–10.15 Gy). In the top quartile for both the highest cumulative number and highest cumulative volume of treated metastases, the median of the mean WB dose was 6.14 Gy (range 4.02–10.15 Gy). Seventy-nine patients (83%) had all treated tumors controlled at last follow-up, reflecting the high and durable control rate. Corticosteroids for tumor- or treatment-related effects were prescribed in just over one-quarter of the patients. Of the patients with radiographically proven adverse radiation effects (AREs; 15%), 4 were symptomatic. Four patients required subsequent craniotomy for hemorrhage, progression, or AREs.

CONCLUSIONS

In selected patients with a large number of cumulative BMs, multiple courses of SRS are feasible and safe. Together with new systemic therapies, the study results demonstrate that the achieved survival rates compare favorably to those of larger contemporary cohorts, while avoiding WBRT in the majority of patients. Therefore, along with the findings of other series, this study supports SRS as a standard practice in selected patients with larger numbers of BMs.

Restricted access

Dennis London, Dev N. Patel, Bernadine Donahue, Ralph E. Navarro, Jason Gurewitz, Joshua S. Silverman, Erik Sulman, Kenneth Bernstein, Amy Palermo, John G. Golfinos, Joshua K. Sabari, Elaine Shum, Vamsidhar Velcheti, Abraham Chachoua, and Douglas Kondziolka

OBJECTIVE

Patients with non–small cell lung cancer (NSCLC) metastatic to the brain are living longer. The risk of new brain metastases when these patients stop systemic therapy is unknown. The authors hypothesized that the risk of new brain metastases remains constant for as long as patients are off systemic therapy.

METHODS

A prospectively collected registry of patients undergoing radiosurgery for brain metastases was analyzed. Of 606 patients with NSCLC, 63 met the inclusion criteria of discontinuing systemic therapy for at least 90 days and undergoing active surveillance. The risk factors for the development of new tumors were determined using Cox proportional hazards and recurrent events models.

RESULTS

The median duration to new brain metastases off systemic therapy was 16.0 months. The probability of developing an additional new tumor at 6, 12, and 18 months was 26%, 40%, and 53%, respectively. There were no additional new tumors 22 months after stopping therapy. Patients who discontinued therapy due to intolerance or progression of the disease and those with mutations in RAS or receptor tyrosine kinase (RTK) pathways (e.g., KRAS, EGFR) were more likely to develop new tumors (hazard ratio [HR] 2.25, 95% confidence interval [CI] 1.33–3.81, p = 2.5 × 10−3; HR 2.51, 95% CI 1.45–4.34, p = 9.8 × 10−4, respectively).

CONCLUSIONS

The rate of new brain metastases from NSCLC in patients off systemic therapy decreases over time and is uncommon 2 years after cessation of cancer therapy. Patients who stop therapy due to toxicity or who have RAS or RTK pathway mutations have a higher rate of new metastases and should be followed more closely.

Restricted access

Adomas Bunevicius, Stylianos Pikis, Douglas Kondziolka, Dev N. Patel, Kenneth Bernstein, Erik P. Sulman, Cheng-chia Lee, Huai-che Yang, Violaine Delabar, David Mathieu, Christopher P. Cifarelli, David E. Arsanious, Basem A. Dahshan, Joshua S. Weir, Herwin Speckter, Angel Mota, Manjul Tripathi, Narendra Kumar, Ronald E. Warnick, and Jason P. Sheehan

OBJECTIVE

Molecular profiles, such as isocitrate dehydrogenase (IDH) mutation and O 6-methylguanine-DNA methyltransferase (MGMT) methylation status, have important prognostic roles for glioblastoma patients. The authors studied the efficacy and safety of stereotactic radiosurgery (SRS) for glioblastoma patients with consideration of molecular tumor profiles.

METHODS

For this retrospective observational multiinstitutional study, the authors pooled consecutive patients who were treated using SRS for glioblastoma at eight institutions participating in the International Radiosurgery Research Foundation. They evaluated predictors of overall and progression-free survival with consideration of IDH mutation and MGMT methylation status.

RESULTS

Ninety-six patients (median age 56 years) underwent SRS (median dose 15 Gy and median treatment volume 5.53 cm3) at 147 tumor sites (range 1 to 7). The majority of patients underwent prior fractionated radiation therapy (92%) and temozolomide chemotherapy (98%). Most patients were treated at recurrence (85%), and boost SRS was used for 12% of patients. The majority of patients harbored IDH wild-type (82%) and MGMT-methylated (62%) tumors. Molecular data were unavailable for 33 patients. Median survival durations after SRS were similar between patients harboring IDH wild-type tumors and those with IDH mutant tumors (9.0 months vs 11 months, respectively), as well as between those with MGMT-methylated tumors and those with MGMT-unmethylated tumors (9.8 vs. 9.0 months, respectively). Prescription dose > 15 Gy (OR 0.367, 95% CI 0.190–0.709, p = 0.003) and treatment volume > 5 cm3 (OR 1.036, 95% CI 1.007–1.065, p = 0.014) predicted overall survival after controlling for age and IDH status. Treatment volume > 5 cm3 (OR 2.215, 95% CI 1.159–4.234, p = 0.02) and absence of gross-total resection (OR 0.403, 95% CI 0.208–0.781, p = 0.007) were associated with inferior local control of SRS-treated lesions in multivariate models. Nine patients experienced adverse radiation events after SRS, and 7 patients developed radiation necrosis at 59 to 395 days after SRS.

CONCLUSIONS

Post-SRS survival was similar as a function of IDH mutation and MGMT promoter methylation status, suggesting that molecular profiles of glioblastoma should be considered when selecting candidates for SRS. SRS prescription dose > 15 Gy and treatment volume ≤ 5 cm3 were associated with longer survival, independent of age and IDH status. Prior gross-total resection and smaller treatment volume were associated with superior local control.

Restricted access

Stylianos Pikis, Adomas Bunevicius, Cheng-Chia Lee, Huai-Che Yang, Brad E. Zacharia, Roman Liščák, Gabriela Simonova, Manjul Tripathi, Narendra Kumar, David Mathieu, Rémi Perron, Selcuk Peker, Yavuz Samanci, Jason Gurewitz, Kenneth Bernstein, Douglas Kondziolka, Ajay Niranjan, L. Dade Lunsford, Nikolaos Mantziaris, and Jason P. Sheehan

OBJECTIVE

As novel therapies improve survival for men with prostate cancer, intracranial metastatic disease has become more common. The purpose of this multicenter study was to evaluate the safety and efficacy of stereotactic radiosurgery (SRS) in the management of intracranial prostate cancer metastases.

METHODS

Demographic data, primary tumor characteristics, SRS treatment parameters, and clinical and imaging follow-up data of patients from nine institutions treated with SRS from July 2005 to June 2020 for cerebral metastases from prostate carcinoma were collected and analyzed.

RESULTS

Forty-six patients were treated in 51 SRS procedures for 120 prostate cancer intracranial metastases. At SRS, the mean patient age was 68.04 ± 9.05 years, the mean time interval from prostate cancer diagnosis to SRS was 4.82 ± 4.89 years, and extracranial dissemination was noted in 34 (73.9%) patients. The median patient Karnofsky Performance Scale (KPS) score at SRS was 80, and neurological symptoms attributed to intracranial involvement were present prior to 39 (76%) SRS procedures. Single-fraction SRS was used in 49 procedures. Stereotactic radiotherapy using 6 Gy in five sessions was utilized in 2 procedures. The median margin dose was 18 (range 6–28) Gy, and the median tumor volume was 2.45 (range 0.04–45) ml. At a median radiological follow-up of 6 (range 0–156) months, local progression was seen with 14 lesions. The median survival following SRS was 15.18 months, and the 1-year overall intracranial progression-free survival was 44%. The KPS score at SRS was noted to be associated with improved overall (p = 0.02) and progression-free survival (p = 0.03). Age ≥ 65 years at SRS was associated with decreased overall survival (p = 0.04). There were no serious grade 3–5 toxicities noted.

CONCLUSIONS

SRS appears to be a safe, well-tolerated, and effective management option for patients with prostate cancer intracranial metastases.

Restricted access

I. Jonathan Pomeraniec, Zhiyuan Xu, Cheng-Chia Lee, Huai-Che Yang, Tomas Chytka, Roman Liscak, Roberto Martinez-Alvarez, Nuria Martinez-Moreno, Luca Attuati, Piero Picozzi, Douglas Kondziolka, Monica Mureb, Kenneth Bernstein, David Mathieu, Michel Maillet, Akiyoshi Ogino, Hao Long, Hideyuki Kano, L. Dade Lunsford, Brad E. Zacharia, Christine Mau, Leonard C. Tuanquin, Christopher Cifarelli, David Arsanious, Joshua Hack, Ronald E. Warnick, Ben A. Strickland, Gabriel Zada, Eric L. Chang, Herwin Speckter, Samir Patel, Dale Ding, Darrah Sheehan, Kimball Sheehan, Svetlana Kvint, Love Y. Buch, Alexander R. Haber, Jacob Shteinhart, Mary Lee Vance, and Jason P. Sheehan

OBJECTIVE

Stereotactic radiosurgery (SRS) provides a safe and effective therapeutic modality for patients with pituitary adenomas. The mechanism of delayed endocrine deficits based on targeted radiation to the hypothalamic-pituitary axis remains unclear. Radiation to normal neuroendocrine structures likely plays a role in delayed hypopituitarism after SRS. In this multicenter study by the International Radiosurgery Research Foundation (IRRF), the authors aimed to evaluate radiation tolerance of structures surrounding pituitary adenomas and identify predictors of delayed hypopituitarism after SRS for these tumors.

METHODS

This is a retrospective review of patients with pituitary adenomas who underwent single-fraction SRS from 1997 to 2019 at 16 institutions within the IRRF. Dosimetric point measurements of 14 predefined neuroanatomical structures along the hypothalamus, pituitary stalk, and normal pituitary gland were made. Statistical analyses were performed to determine the impact of doses to critical structures on clinical, radiographic, and endocrine outcomes.

RESULTS

The study cohort comprised 521 pituitary adenomas treated with SRS. Tumor control was achieved in 93.9% of patients over a median follow-up period of 60.1 months, and 22.5% of patients developed new loss of pituitary function with a median treatment volume of 3.2 cm3. Median maximal radiosurgical doses to the hypothalamus, pituitary stalk, and normal pituitary gland were 1.4, 7.2, and 11.3 Gy, respectively. Nonfunctioning adenoma status, younger age, higher margin dose, and higher doses to the pituitary stalk and normal pituitary gland were independent predictors of new or worsening hypopituitarism. Neither the dose to the hypothalamus nor the ratio between doses to the pituitary stalk and gland were significant predictors. The threshold of the median dose to the pituitary stalk for new endocrinopathy was 10.7 Gy in a single fraction (OR 1.77, 95% CI 1.17–2.68, p = 0.006).

CONCLUSIONS

SRS for the treatment of pituitary adenomas affords a high tumor control rate with an acceptable risk of new or worsening endocrinopathy. This evaluation of point dosimetry to adjacent neuroanatomical structures revealed that doses to the pituitary stalk, with a threshold of 10.7 Gy, and doses to the normal gland significantly increased the risk of post-SRS hypopituitarism. In patients with preserved pre-SRS neuroendocrine function, limiting the dose to the pituitary stalk and gland while still delivering an optimal dose to the tumor appears prudent.

Open access

Hannah K. Weiss, Donato R. Pacione, Steven Galetta, and Douglas Kondziolka

BACKGROUND

Disruptions of the inferior longitudinal fasciculus (ILF) in the nondominant temporal lobe can lead to the rare but significant higher visual-processing disturbance of prosopagnosia. Here, the authors describe a 57-year-old right hand-dominant female with a large breast cancer brain metastasis in the right temporal lobe who underwent resection and subsequent Gamma Knife radiosurgery. She presented with difficulty with facial recognition, but following surgical intervention, the prosopagnosia became more profound.

OBSERVATIONS

Even in nondominant cortex, significant deficits can arise when operating near higher visual-processing centers, including the ILF.

LESSONS

This case highlights the utility of imaging-based tractography obtained from preoperative imaging for resective surgical planning even when operating in areas that do not involve what is traditionally considered elegant areas of the brain. To optimize neurological outcomes in metastatic tumor resection, awareness and diffusion tensor imaging of neighboring, displaced white matter tracts may prevent permanent deficits in higher visual processing.

Restricted access

Jason Gurewitz, Zane Schnurman, Aya Nakamura, Ralph E. Navarro, Dev N. Patel, Sean O. McMenomey, J. Thomas Roland Jr., John G. Golfinos, and Douglas Kondziolka

OBJECTIVE

In this study, the authors aimed to clarify the relationship between hearing loss and tumor volumetric growth rates in patients with untreated vestibular schwannoma (VS).

METHODS

Records of 128 treatment-naive patients diagnosed with unilateral VS between 2012 and 2018 with serial audiometric assessment and MRI were reviewed. Tumor growth rates were determined from initial and final tumor volumes, with a median follow-up of 24.3 months (IQR 8.5–48.8 months). Hearing changes were based on pure tone averages, speech discrimination scores, and American Academy of Otolaryngology–Head and Neck Surgery hearing class. Primary outcomes were the loss of class A hearing and loss of serviceable hearing, estimated using the Kaplan-Meier method and with associations estimated from Cox proportional hazards models and reported as hazard ratios.

RESULTS

Larger initial tumor size was associated with an increased risk of losing class A (HR 1.5 for a 1-cm3 increase; p = 0.047) and serviceable (HR 1.3; p < 0.001) hearing. Additionally, increasing volumetric tumor growth rate was associated with elevated risk of loss of class A hearing (HR 1.2 for increase of 100% per year; p = 0.031) and serviceable hearing (HR 1.2; p = 0.014). Hazard ratios increased linearly with increasing growth rates, without any evident threshold growth rate that resulted in a large, sudden increased risk of hearing loss.

CONCLUSIONS

Larger initial tumor size and faster tumor growth rates were associated with an elevated risk of loss of class A and serviceable hearing.

Restricted access

Carolina Gesteira Benjamin, Zane Schnurman, Kimberly Ashayeri, Eman Kazi, Reed Mullen, Jason Gurewitz, John G. Golfinos, Chandranath Sen, Dimitris G. Placantonakis, Donato Pacione, and Douglas Kondziolka

OBJECTIVE

Meningiomas that arise primarily within the cavernous sinus are often believed to be more indolent in their growth pattern. Despite this perceived growth pattern, disabling symptoms can arise even with small tumors. While research has been done on cavernous sinus meningiomas (CSMs) and their treatment, very little is known about their natural growth rates. With a better understanding of the growth rate of CSM, patient treatment and guidance can be can optimized and individualized. The goal of this study was to determine volumetric growth rates of untreated CSMs.

METHODS

Thirty-seven patients with 166 MR images obtained between May 2004 and September 2019 were reviewed, with a range of 2–13 MR images per patient (average of 4.5 MR images per patient). These scans were obtained over an average follow-up period of 45.9 months (median 33.8, range 2.8–136.9 months). All imaging prior to any intervention was included in this analysis. Volumetric measurements were performed and assessed over time.

RESULTS

The estimated volumetric growth rate was 23.3% per year (95% CI 10.2%–38.0%, p < 0.001), which is equivalent to an estimated volume doubling time (VDT) of 3.3 years (95% CI 2.1–7.1 years). There was no significant relationship between growth rate and patient age (p = 0.09) or between growth rate and patient sex (p = 0.78). The median absolute growth rate was 41% with a range of −1% to 1793%. With a definition of “growth” as an increase of greater than 20% during the observed period, 65% of tumors demonstrated growth within their observation interval. Growth rates for each tumor were calculated and tumors were segmented based on growth rate. Of 37 patients, 22% (8) demonstrated no growth (< 5% annual growth, equivalent to a VDT > 13.9 years), 32% (12) were designated as slow growth (annual growth rate 5%–20%, VDT 3.5–13.9 years), 38% (14) were found to have medium growth (annual growth rate 20%–100%, VDT 0.7–3.5 years), and 8% were considered fast growing (annual growth rate > 100%, VDT < 0.7 years).

CONCLUSIONS

This study evaluated CSM volumetric growth rates. A deeper understanding of the natural history of untreated CSMs allows for better counseling and management of patients.

Restricted access

John W. Hopewell, Ian Paddick, Bleddyn Jones, and Thomas Klinge