Browse

You are looking at 1 - 2 of 2 items for

  • Refine by Access: user x
  • By Author: Oh, S. Paul x
  • By Author: Lawton, Michael T. x
Clear All
Free access

Emerging pathogenic mechanisms in human brain arteriovenous malformations: a contemporary review in the multiomics era

Ethan A. Winkler, Mark A. Pacult, Joshua S. Catapano, Lea Scherschinski, Visish M. Srinivasan, Christopher S. Graffeo, S. Paul Oh, and Michael T. Lawton

A variety of pathogenic mechanisms have been described in the formation, maturation, and rupture of brain arteriovenous malformations (bAVMs). While the understanding of bAVMs has largely been formulated based on animal models of rare hereditary diseases in which AVMs form, a new era of “omics” has permitted large-scale examinations of contributory genetic variations in human sporadic bAVMs. New findings regarding the pathogenesis of bAVMs implicate changes to endothelial and mural cells that result in increased angiogenesis, proinflammatory recruitment, and breakdown of vascular barrier properties that may result in hemorrhage; a greater diversity of cell populations that compose the bAVM microenvironment may also be implicated and complicate traditional models. Genomic sequencing of human bAVMs has uncovered inherited, de novo, and somatic activating mutations, such as KRAS, which contribute to the pathogenesis of bAVMs. New droplet-based, single-cell sequencing technologies have generated atlases of cell-specific molecular derangements. Herein, the authors review emerging genomic and transcriptomic findings underlying pathologic cell transformations in bAVMs derived from human tissues. The application of multiple sequencing modalities to bAVM tissues is a natural next step for researchers, although the potential therapeutic benefits or clinical applications remain unknown.

Free access

Novel experimental model of brain arteriovenous malformations using conditional Alk1 gene deletion in transgenic mice

Chul Han, Michael J. Lang, Candice L. Nguyen, Ernesto Luna Melendez, Shwetal Mehta, Gregory H. Turner, Michael T. Lawton, and S. Paul Oh

OBJECTIVE

Hereditary hemorrhagic telangiectasia is the only condition associated with multiple inherited brain arteriovenous malformations (AVMs). Therefore, a mouse model was developed with a genetics-based approach that conditionally deleted the causative activin receptor-like kinase 1 (Acvrl1 or Alk1) gene. Radiographic and histopathological findings were correlated, and AVM stability and hemorrhagic behavior over time were examined.

METHODS

Alk1-floxed mice were crossed with deleter mice to generate offspring in which both copies of the Alk1 gene were deleted by Tagln-Cre to form brain AVMs in the mice. AVMs were characterized using MRI, MRA, and DSA. Brain AVMs were characterized histopathologically with latex dye perfusion, immunofluorescence, and Prussian blue staining.

RESULTS

Brains of 55 Tagln-Cre+;Alk1 f/f mutant mice were categorized into three groups: no detectable vascular lesions (group 1; 23 of 55, 42%), arteriovenous fistulas (AVFs) with no nidus (group 2; 10 of 55, 18%), and nidal AVMs (group 3; 22 of 55, 40%). Microhemorrhage was observed on MRI or MRA in 11 AVMs (50%). AVMs had the angiographic hallmarks of early nidus opacification, a tangle of arteries and dilated draining veins, and rapid shunting of blood flow. Latex dye perfusion confirmed arteriovenous shunting in all AVMs and AVFs. Microhemorrhages were detected adjacent to AVFs and AVMs, visualized by iron deposition, Prussian blue staining, and macrophage infiltration using CD68 immunostaining. Brain AVMs were stable on serial MRI and MRA in group 3 mice (mean age at initial imaging 2.9 months; mean age at last imaging 9.5 months).

CONCLUSIONS

Approximately 40% of transgenic mice satisfied the requirements of a stable experimental AVM model by replicating nidal anatomy, arteriovenous hemodynamics, and microhemorrhagic behavior. Transgenic mice with AVFs had a recognizable phenotype of hereditary hemorrhagic telangiectasia but were less suitable for experimental modeling. AVM pathogenesis can be understood as the combination of conditional Alk1 gene deletion during embryogenesis and angiogenesis that is hyperactive in developing and newborn mice, which translates to a congenital origin in most patients but an acquired condition in patients with a confluence of genetic and angiogenic events later in life. This study offers a novel experimental brain AVM model for future studies of AVM pathophysiology, growth, rupture, and therapeutic regression.