Browse

You are looking at 1 - 3 of 3 items for

  • User-accessible content x
  • By Author: Mohammadi, Alireza M. x
  • By Author: Angelov, Lilyana x
Clear All
Free access

Krishna C. Joshi, Alankrita Raghavan, Baha’eddin Muhsen, Jason Hsieh, Hamid Borghei-Razavi, Samuel T. Chao, Gene H. Barnett, John H. Suh, Gennady Neyman, Varun R. Kshettry, Pablo F. Recinos, Alireza M. Mohammadi and Lilyana Angelov

OBJECTIVE

Gamma Knife radiosurgery (GKRS) has been successfully used for the treatment of intracranial meningiomas given its steep dose gradients and high-dose conformality. However, treatment of skull base meningiomas (SBMs) may pose significant risk to adjacent radiation-sensitive structures such as the cranial nerves. Fractionated GKRS (fGKRS) may decrease this risk, but until recently it has not been practical with traditional pin-based systems. This study reports the authors’ experience in treating SBMs with fGKRS, using a relocatable, noninvasive immobilization system.

METHODS

The authors performed a retrospective review of all patients who underwent fGKRS for SBMs between 2013 and 2018 delivered using the Extend relocatable frame system or the Icon system. Patient demographics, pre- and post-GKRS tumor characteristics, perilesional edema, prior treatment details, and clinical symptoms were evaluated. Volumetric analysis of pre-GKRS, post-GKRS, and subsequent follow-up visits was performed.

RESULTS

Twenty-five patients met inclusion criteria. Nineteen patients were treated with the Icon system, and 6 patients were treated with the Extend system. The mean pre-fGKRS tumor volume was 7.62 cm3 (range 4.57–13.07 cm3). The median margin dose was 25 Gy delivered in 4 (8%) or 5 (92%) fractions. The median follow-up time was 12.4 months (range 4.7–17.4 months). Two patients (9%) experienced new-onset cranial neuropathy at the first follow-up. The mean postoperative tumor volume reduction was 15.9% with 6 patients (27%) experiencing improvement of cranial neuropathy at the first follow-up. Median first follow-up scans were obtained at 3.4 months (range 2.8–4.3 months). Three patients (12%) developed asymptomatic, mild perilesional edema by the first follow-up, which remained stable subsequently.

CONCLUSIONS

fGKRS with relocatable, noninvasive immobilization systems is well tolerated in patients with SBMs and demonstrated satisfactory tumor control as well as limited radiation toxicity. Future prospective studies with long-term follow-up and comparison to single-session GKRS or fractionated stereotactic radiotherapy are necessary to validate these findings and determine the efficacy of this approach in the management of SBMs.

Full access

Jacob A. Miller, Ehsan H. Balagamwala, Camille A. Berriochoa, Lilyana Angelov, John H. Suh, Edward C. Benzel, Alireza M. Mohammadi, Todd Emch, Anthony Magnelli, Andrew Godley, Peng Qi and Samuel T. Chao

OBJECTIVE

Spine stereotactic radiosurgery (SRS) is a safe and effective treatment for spinal metastases. However, it is unknown whether this highly conformal radiation technique is suitable at instrumented sites given the potential for microscopic disease seeding. The authors hypothesized that spinal decompression with instrumentation is not associated with increased local failure (LF) following SRS.

METHODS

A 2:1 propensity-matched retrospective cohort study of patients undergoing SRS for spinal metastasis was conducted. Patients with less than 1 month of radiographic follow-up were excluded. Each SRS treatment with spinal decompression and instrumentation was propensity matched to 2 controls without decompression or instrumentation on the basis of demographic, disease-related, dosimetric, and treatment-site characteristics. Standardized differences were used to assess for balance between matched cohorts.

The primary outcome was the 12-month cumulative incidence of LF, with death as a competing risk. Lesions demonstrating any in-field progression were considered LFs. Secondary outcomes of interest were post-SRS pain flare, vertebral compression fracture, instrumentation failure, and any Grade ≥ 3 toxicity. Cumulative incidences analysis was used to estimate LF in each cohort, which were compared via Gray’s test. Multivariate competing-risks regression was then used to adjust for prespecified covariates.

RESULTS

Of 650 candidates for the control group, 166 were propensity matched to 83 patients with instrumentation. Baseline characteristics were well balanced. The median prescription dose was 16 Gy in each cohort. The 12-month cumulative incidence of LF was not statistically significantly different between cohorts (22.8% [instrumentation] vs 15.8% [control], p = 0.25). After adjusting for the prespecified covariates in a multivariate competing-risks model, decompression with instrumentation did not contribute to a greater risk of LF (HR 1.21, 95% CI 0.74–1.98, p = 0.45). The incidences of post-SRS pain flare (11% vs 14%, p = 0.55), vertebral compression fracture (12% vs 22%, p = 0.04), and Grade ≥ 3 toxicity (1% vs 1%, p = 1.00) were not increased at instrumented sites. No instrumentation failures were observed.

CONCLUSIONS

In this propensity-matched analysis, LF and toxicity were similar among cohorts, suggesting that decompression with instrumentation does not significantly impact the efficacy or safety of spine SRS. Accordingly, spinal instrumentation may not be a contraindication to SRS. Future studies comparing SRS to conventional radiotherapy at instrumented sites in matched populations are warranted.

Full access

Lilyana Angelov, Alireza M. Mohammadi, Elizabeth E. Bennett, Mahmoud Abbassy, Paul Elson, Samuel T. Chao, Joshua S. Montgomery, Ghaith Habboub, Michael A. Vogelbaum, John H. Suh, Erin S. Murphy, Manmeet S. Ahluwalia, Sean J. Nagel and Gene H. Barnett

OBJECTIVE

Stereotactic radiosurgery (SRS) is the primary modality for treating brain metastases. However, effective radiosurgical control of brain metastases ≥ 2 cm in maximum diameter remains challenging and is associated with suboptimal local control (LC) rates of 37%–62% and an increased risk of treatment-related toxicity. To enhance LC while limiting adverse effects (AEs) of radiation in these patients, a dose-dense treatment regimen using 2-staged SRS (2-SSRS) was used. The objective of this study was to evaluate the efficacy and toxicity of this treatment strategy.

METHODS

Fifty-four patients (with 63 brain metastases ≥ 2 cm) treated with 2-SSRS were evaluated as part of an institutional review board–approved retrospective review. Volumetric measurements at first-stage stereotactic radiosurgery (first SSRS) and second-stage SRS (second SSRS) treatments and on follow-up imaging studies were determined. In addition to patient demographic data and tumor characteristics, the study evaluated 3 primary outcomes: 1) response at first follow-up MRI, 2) time to local progression (TTP), and 3) overall survival (OS) with 2-SSRS. Response was analyzed using methods for binary data, TTP was analyzed using competing-risks methods to account for patients who died without disease progression, and OS was analyzed using conventional time-to-event methods. When needed, analyses accounted for multiple lesions in the same patient.

RESULTS

Among 54 patients, 46 (85%) had 1 brain metastasis treated with 2-SSRS, 7 patients (13%) had 2 brain metastases concurrently treated with 2-SSRS, and 1 patient underwent 2-SSRS for 3 concurrent brain metastases ≥ 2 cm. The median age was 63 years (range 23–83 years), 23 patients (43%) had non–small cell lung cancer, and 14 patients (26%) had radioresistant tumors (renal or melanoma). The median doses at first and second SSRS were 15 Gy (range 12–18 Gy) and 15 Gy (range 12–15 Gy), respectively. The median duration between stages was 34 days, and median tumor volumes at the first and second SSRS were 10.5 cm3 (range 2.4–31.3 cm3) and 7.0 cm3 (range 1.0–29.7 cm3). Three-month follow-up imaging results were available for 43 lesions; the median volume was 4.0 cm3 (range 0.1–23.1 cm3). The median change in volume compared with baseline was a decrease of 54.9% (range −98.2% to 66.1%; p < 0.001). Overall, 9 lesions (14.3%) demonstrated local progression, with a median of 5.2 months (range 1.3–7.4 months), and 7 (11.1%) demonstrated AEs (6.4% Grade 1 and 2 toxicity; 4.8% Grade 3). The estimated cumulative incidence of local progression at 6 months was 12% ± 4%, corresponding to an LC rate of 88%. Shorter TTP was associated with greater tumor volume at baseline (p = 0.01) and smaller absolute (p = 0.006) and relative (p = 0.05) decreases in tumor volume from baseline to second SSRS. Estimated OS rates at 6 and 12 months were 65% ± 7% and 49% ± 8%, respectively.

CONCLUSIONS

2-SSRS is an effective treatment modality that resulted in significant reduction of brain metastases ≥ 2 cm, with excellent 3-month (95%) and 6-month (88%) LC rates and an overall AE rate of 11%. Prospective studies with larger cohorts and longer follow-up are necessary to assess the durability and toxicities of 2-SSRS.