Browse

You are looking at 1 - 3 of 3 items for

  • User-accessible content x
  • By Author: Marupudi, Neena I. x
Clear All
Full access

Neena I. Marupudi, Sandeep Sood, Arlene Rozzelle and Steven D. Ham

OBJECTIVE

Cranial vault expansion is performed in pediatric patients with craniosynostosis to improve head shape. Another argument for performing total cranial vault reconstruction is the potential reduction in the harmful effects of elevated intracranial pressure (ICP) that are associated with craniosynostosis. Alternatively, molding helmets have been shown to improve the cranial index (CI) in patients with sagittal synostosis without surgery. However, it is unknown if the use of molding helmets without surgery contributes to adverse changes in ICP. The effect of molding helmets on ICP and CI in patients with sagittal synostosis was investigated.

METHODS

A prospective cohort study of 24 pediatric patients with sagittal synostosis who planned to undergo total cranial reconstruction was performed from 2011 to 2014 at the Children's Hospital of Michigan. A preoperative molding helmet was used in 13 patients, and no molding helmet was used in 11 patients. End-tidal carbon dioxide, patient positioning, level of sedation, type of anesthetic, and the monitoring site at the time of intraoperative recording were regulated and standardized to establish the accuracy of the ICP readings. CI and head circumference were monitored for each patient.

RESULTS

The mean duration of the preoperative use of the molding helmet was 17 weeks (range 7–37 weeks). Under controlled settings, the average intraoperative ICP was 7.2 mm Hg (range 2–18 mm Hg) for patients treated with a preoperative molding helmet and 9.5 mm Hg (range 2–22 mm Hg) for patients with no preoperative molding helmet. ICP was not significantly different between the 2 groups, suggesting that the use of a molding helmet in this population is safe. The average CI at the time of helmet placement was 0.70 (range 0.67–0.73), and this improved to an average of 0.74 (range 0.69–0.79) after using the molding helmet for a mean of 17 weeks.

CONCLUSIONS

ICPs were not significantly different with the use of a preoperative molding helmet, refuting the prevailing thought that molding helmets would be detrimental in children who have craniosynostosis. The use of molding helmet in this population of patients improves head shape and does not adversely affect ICP.

Free access

P. Sarat Chandra and Manjari Tripathi

Free access

Sandeep Sood, Neena I. Marupudi, Eishi Asano, Abilash Haridas and Steven D. Ham

OBJECT

Corpus callosotomy and hemispherotomy are conventionally performed via a large craniotomy with the aid of a microscope for children with intractable epilepsy. Primary technical considerations include completeness of disconnection and blood loss. The authors describe an endoscopic technique performed through a microcraniotomy for these procedures.

METHODS

Four patients with drop attacks and 2 with intractable seizures related to a neonatal stroke underwent endoscopic complete corpus callosotomy and hemispherotomy, respectively. The surgeries were performed through a 2- to 3-cm precoronal microcraniotomy. Interhemispheric dissection to the corpus callosum was done using the standard technique. Subsequently, the bimanual technique with a suction device mounted on an endoscope was used to perform a complete corpus callosotomy, including interforniceal and anterior commissure disconnection. In patients who had hemispherotomy, the fornix was resected posteriorly and lateral disconnection was done by unroofing the temporal horn. Anteriorly, endoscopic corticectomy was done along the ipsilateral anterior cerebral artery to reach the bifurcation of the internal carotid artery to complete the anterior disconnection. Postoperative MRI and diffusion tensor imaging (DTI) of the brain were performed to confirm complete disconnection.

RESULTS

The procedure was accomplished successfully in all patients, with excellent visualization secured. None of the patients required a blood transfusion. Postoperative MRI and DTI confirmed completeness of the disconnection. Patients who underwent corpus callosotomy had complete resolution of drop attacks at a mean follow-up of 6 months, and patients who underwent hemispherotomy became seizure free.

CONCLUSIONS

Endoscopic corpus callosotomy and hemispherotomy are surgically feasible procedures associated with minimal blood loss, minimal risk, and excellent visualization.