You are looking at 1 - 1 of 1 items for

  • Refine by Access: user x
  • By Author: Liu, Shanshan x
  • By Author: Liu, Shanshan x
  • By Author: Li, Zhehuang x
  • By Author: Li, Yan x
Clear All
Free access

3D-printed vertebral body for anterior spinal reconstruction in patients with thoracolumbar spinal tumors

Hua Zhou, Shanshan Liu, Zhehuang Li, Xiaoguang Liu, Lei Dang, Yan Li, Zihe Li, Panpan Hu, Ben Wang, Feng Wei, and Zhongjun Liu


A 3D-printed vertebral prosthesis can be used to reconstruct a bone defect more precisely because of its tailored shape, with its innermost porous structure inducing bone ingrowth. The aim of this study was to evaluate the clinical outcomes of using a 3D-printed artificial vertebral body for spinal reconstruction after en bloc resection of thoracolumbar tumors.


This was a retrospective analysis of 23 consecutive patients who underwent surgical treatment for thoracolumbar tumors at our hospital. En bloc resection was performed in all cases, based on the Weinstein-Boriani-Biagini surgical staging system, and anterior reconstruction was performed using a 3D-printed artificial vertebral body. Prosthesis subsidence, fusion status, and instrumentation-related complications were evaluated. Stability of the anterior reconstruction method was evaluated by CT, and CT Hounsfield unit (HU) values were measured to evaluate fusion status.


The median follow-up was 37 (range 24–58) months. A customized 3D-printed artificial vertebral body was used in 10 patients, with an off-the-shelf 3D-printed artificial vertebral body used in the other 13 patients. The artificial vertebral body was implanted anteriorly in 5 patients and posteriorly in 18 patients. The overall fusion rate was 87.0%. The average prosthesis subsidence at the final follow-up was 1.60 ± 1.79 mm. Instrument failure occurred in 2 patients, both of whom had substantial subsidence (8.47 and 3.69 mm, respectively). At 3 months, 6 months, and 1 year postoperatively, the mean CT HU values within the artificial vertebral body were 1930 ± 294, 1997 ± 336, and 1994 ± 257, respectively, with each of these values being significantly higher than the immediate postoperative value of 1744 ± 321 (p < 0.05).


The use of a 3D-printed artificial vertebral body for anterior reconstruction after en bloc resection of the thoracolumbar spinal tumor may be a feasible and reliable option. The low incidence of prosthesis subsidence of 3D-printed endoprostheses can provide good stability instantly. Measurement of HU values with CT is a valuable method to evaluate the osseointegration at the bone-metal interface of a 3D-printed vertebral prosthesis.