Browse

You are looking at 1 - 10 of 31 items for

  • User-accessible content x
  • By Author: Dhall, Sanjay S. x
Clear All
Free access

Anthony M. DiGiorgio, Rachel Tsolinas, Mohanad Alazzeh, Jenny Haefeli, Jason F. Talbott, Adam R. Ferguson, Jacqueline C. Bresnahan, Michael S. Beattie, Geoffrey T. Manley, William D. Whetstone, Praveen V. Mummaneni and Sanjay S. Dhall

OBJECTIVE

Spinal cord injuries (SCIs) occur in approximately 17,000 people in the US each year. The average length of hospital stay is 11 days, and deep venous thrombosis (DVT) rates as high as 65% are reported in these patients. There is no consensus on the appropriate timing of chemical DVT prophylaxis for this critically injured patient cohort. The object of this study was to determine if low-molecular-weight heparin (LMWH) was safe and effective if given within 24 hours of SCI.

METHODS

The Transforming Research and Clinical Knowledge in SCIs study is a prospective observational study conducted by the UCSF Brain and Spinal Injury Center. Protocol at this center includes administration of LMWH within 24 hours of SCI. Data were retrospectively reviewed to determine DVT rate, pulmonary embolism (PE) rate, and hemorrhagic complications.

RESULTS

Forty-nine patients were enrolled in the study. There were 3 DVTs (6.1%), 2 PEs (4.1%), and no hemorrhagic complications. Regression modeling did not find an association between DVT and/or PE and age, American Spinal Injury Association grade, sex, race, or having undergone a neurosurgical procedure.

CONCLUSIONS

A standardized protocol in which LMWH is given to patients with SCI within 24 hours of injury is effective in keeping venous thromboembolism at the lower end of the reported range, and is safe, with a zero rate of adverse bleeding events.

Free access

John K. Yue, Ethan A. Winkler, Jonathan W. Rick, Hansen Deng, Carlene P. Partow, Pavan S. Upadhyayula, Harjus S. Birk, Andrew K. Chan and Sanjay S. Dhall

Traumatic spinal cord injury (SCI) often occurs in patients with concurrent traumatic injuries in other body systems. These patients with polytrauma pose unique challenges to clinicians. The current review evaluates existing guidelines and updates the evidence for prehospital transport, immobilization, initial resuscitation, critical care, hemodynamic stability, diagnostic imaging, surgical techniques, and timing appropriate for the patient with SCI who has multisystem trauma. Initial management should be systematic, with focus on spinal immobilization, timely transport, and optimizing perfusion to the spinal cord. There is general evidence for the maintenance of mean arterial pressure of > 85 mm Hg during immediate and acute care to optimize neurological outcome; however, the selection of vasopressor type and duration should be judicious, with considerations for level of injury and risks of increased cardiogenic complications in the elderly. Level II recommendations exist for early decompression, and additional time points of neurological assessment within the first 24 hours and during acute care are warranted to determine the temporality of benefits attributable to early surgery. Venous thromboembolism prophylaxis using low-molecular-weight heparin is recommended by current guidelines for SCI. For these patients, titration of tidal volumes is important to balance the association of earlier weaning off the ventilator, with its risk of atelectasis, against the risk for lung damage from mechanical overinflation that can occur with prolonged ventilation. Careful evaluation of infection risk is a priority following multisystem trauma for patients with relative immunosuppression or compromise. Although patients with polytrauma may experience longer rehabilitation courses, long-term neurological recovery is generally comparable to that in patients with isolated SCI after controlling for demographics. Bowel and bladder disorders are common following SCI, significantly reduce quality of life, and constitute a focus of targeted therapies. Emerging biomarkers including glial fibrillary acidic protein, S100β, and microRNAs for traumatic SCIs are presented. Systematic management approaches to minimize sources of secondary injury are discussed, and areas requiring further research, implementation, and validation are identified.

Free access

Junichi Ohya, Todd D. Vogel, Sanjay S. Dhall, Sigurd Berven and Praveen V. Mummaneni

S-2 alar iliac (S2AI) screw fixation has recently been recognized as a useful technique for pelvic fixation. The authors demonstrate two cases where S2AI fixation was indicated: one case was a sacral insufficiency fracture following a long-segment fusion in a patient with a transitional S-1 vertebra; the other case involved pseudarthrosis following lumbosacral fixation. S2AI screws offer rigid fixation, low profile, and allow easy connection to the lumbosacral rod. The authors describe and demonstrate the surgical technique and nuances for the S2AI screw in a case with transitional S-1 anatomy and in a case with normal S-1 anatomy.

The video can be found here: https://youtu.be/Sj21lk13_aw.

Free access

Ethan A. Winkler, John K. Yue, John F. Burke, Andrew K. Chan, Sanjay S. Dhall, Mitchel S. Berger, Geoffrey T. Manley and Phiroz E. Tarapore

OBJECTIVE

Sports-related traumatic brain injury (TBI) is an important public health concern estimated to affect 300,000 to 3.8 million people annually in the United States. Although injuries to professional athletes dominate the media, this group represents only a small proportion of the overall population. Here, the authors characterize the demographics of sports-related TBI in adults from a community-based trauma population and identify predictors of prolonged hospitalization and increased morbidity and mortality rates.

METHODS

Utilizing the National Sample Program of the National Trauma Data Bank (NTDB), the authors retrospectively analyzed sports-related TBI data from adults (age ≥ 18 years) across 5 sporting categories—fall or interpersonal contact (FIC), roller sports, skiing/snowboarding, equestrian sports, and aquatic sports. Multivariable regression analysis was used to identify predictors of prolonged hospital length of stay (LOS), medical complications, inpatient mortality rates, and hospital discharge disposition. Statistical significance was assessed at α < 0.05, and the Bonferroni correction for multiple comparisons was applied for each outcome analysis.

RESULTS

From 2003 to 2012, in total, 4788 adult sports-related TBIs were documented in the NTDB, which represented 18,310 incidents nationally. Equestrian sports were the greatest contributors to sports-related TBI (45.2%). Mild TBI represented nearly 86% of injuries overall. Mean (± SEM) LOSs in the hospital or intensive care unit (ICU) were 4.25 ± 0.09 days and 1.60 ± 0.06 days, respectively. The mortality rate was 3.0% across all patients, but was statistically higher in TBI from roller sports (4.1%) and aquatic sports (7.7%). Age, hypotension on admission to the emergency department (ED), and the severity of head and extracranial injuries were statistically significant predictors of prolonged hospital and ICU LOSs, medical complications, failure to discharge to home, and death. Traumatic brain injury during aquatic sports was similarly associated with prolonged ICU and hospital LOSs, medical complications, and failure to be discharged to home.

CONCLUSIONS

Age, hypotension on ED admission, severity of head and extracranial injuries, and sports mechanism of injury are important prognostic variables in adult sports-related TBI. Increasing TBI awareness and helmet use—particularly in equestrian and roller sports—are critical elements for decreasing sports-related TBI events in adults.

Free access

John K. Yue, Ethan A. Winkler, John F. Burke, Andrew K. Chan, Sanjay S. Dhall, Mitchel S. Berger, Geoffrey T. Manley and Phiroz E. Tarapore

OBJECTIVE

Traumatic brain injury (TBI) in children is a significant public health concern estimated to result in over 500,000 emergency department (ED) visits and more than 60,000 hospitalizations in the United States annually. Sports activities are one important mechanism leading to pediatric TBI. In this study, the authors characterize the demographics of sports-related TBI in the pediatric population and identify predictors of prolonged hospitalization and of increased morbidity and mortality rates.

METHODS

Utilizing the National Sample Program of the National Trauma Data Bank (NTDB), the authors retrospectively analyzed sports-related TBI data from children (age 0–17 years) across 5 sports categories: fall or interpersonal contact (FIC), roller sports, skiing/snowboarding, equestrian sports, and aquatic sports. Multivariable regression analysis was used to identify predictors of prolonged length of stay (LOS) in the hospital or intensive care unit (ICU), medical complications, inpatient mortality rates, and hospital discharge disposition. Statistical significance was assessed at α < 0.05, and the Bonferroni correction (set at significance threshold p = 0.01) for multiple comparisons was applied in each outcome analysis.

RESULTS

From 2003 to 2012, in total 3046 pediatric sports-related TBIs were recorded in the NTDB, and these injuries represented 11,614 incidents nationally after sample weighting. Fall or interpersonal contact events were the greatest contributors to sports-related TBI (47.4%). Mild TBI represented 87.1% of the injuries overall. Mean (± SEM) LOSs in the hospital and ICU were 2.68 ± 0.07 days and 2.73 ± 0.12 days, respectively. The overall mortality rate was 0.8%, and the prevalence of medical complications was 2.1% across all patients. Severities of head and extracranial injuries were significant predictors of prolonged hospital and ICU LOSs, medical complications, failure to discharge to home, and death. Hypotension on admission to the ED was a significant predictor of failure to discharge to home (OR 0.05, 95% CI 0.03–0.07, p < 0.001). Traumatic brain injury incurred during roller sports was independently associated with prolonged hospital LOS compared with FIC events (mean increase 0.54 ± 0.15 days, p < 0.001).

CONCLUSIONS

In pediatric sports-related TBI, the severities of head and extracranial traumas are important predictors of patients developing acute medical complications, prolonged hospital and ICU LOSs, in-hospital mortality rates, and failure to discharge to home. Acute hypotension after a TBI event decreases the probability of successful discharge to home. Increasing TBI awareness and use of head-protective gear, particularly in high-velocity sports in older age groups, is necessary to prevent pediatric sports-related TBI or to improve outcomes after a TBI.

Full access

William J. Readdy, William D. Whetstone, Adam R. Ferguson, Jason F. Talbott, Tomoo Inoue, Rajiv Saigal, Jacqueline C. Bresnahan, Michael S. Beattie, Jonathan Z. Pan, Geoffrey T. Manley and Sanjay S. Dhall

OBJECT

The optimal mean arterial pressure (MAP) for spinal cord perfusion after trauma remains unclear. Although there are published data on MAP goals after spinal cord injury (SCI), the specific blood pressure management for acute traumatic central cord syndrome (ATCCS) and the implications of these interventions have yet to be elucidated. Additionally, the complications of specific vasopressors have not been fully explored in this injury condition.

METHODS

The present study is a retrospective cohort analysis of 34 patients with ATCCS who received any vasopressor to maintain blood pressure above predetermined MAP goals at a single Level 1 trauma center. The collected variables were American Spinal Injury Association (ASIA) grades at admission and discharge, administered vasopressor and associated complications, other interventions and complications, and timing of surgery. The relationship between the 2 most common vasopressors—dopamine and phenylephrine—and complications within the cohort as a whole were explored, and again after stratification by age.

RESULTS

The mean age of the ATCCS patients was 62 years. Dopamine was the most commonly used primary vasopressor (91% of patients), followed by phenylephrine (65%). Vasopressors were administered to maintain MAP goals fora mean of 101 hours. Neurological status improved by a median of 1 ASIA grade in all patients, regardless of the choice of vasopressor. Sixty-four percent of surgical patients underwent decompression within 24 hours. There was no observed relationship between the timing of surgical intervention and the complication rate. Cardiogenic complications associated with vasopressor usage were notable in 68% of patients who received dopamine and 46% of patients who received phenylephrine. These differences were not statistically significant (OR with dopamine 2.50 [95% CI 0.82–7.78], p = 0.105). However, in the subgroup of patients > 55 years, dopamine produced statistically significant increases in the complication rates when compared with phenylephrine (83% vs 50% for dopamine and phenylephrine, respectively; OR with dopamine 5.0 [95% CI 0.99–25.34], p = 0.044).

CONCLUSIONS

Vasopressor usage in ATCCS patients is associated with complication rates that are similar to the reported literature for SCI. Dopamine was associated with a higher risk of complications in patients > 55 years. Given the increased incidence of ATCCS in older populations, determination of MAP goals and vasopressor administration should be carefully considered in these patients. While a randomized control trial on this topic may not be practical, a multiinstitutional prospective study for SCI that includes ATCCS patients as a subpopulation would be useful for examining MAP goals in this population.

Full access

Jason F. Talbott, William D. Whetstone, William J. Readdy, Adam R. Ferguson, Jacqueline C. Bresnahan, Rajiv Saigal, Gregory W. J. Hawryluk, Michael S. Beattie, Marc C. Mabray, Jonathan Z. Pan, Geoffrey T. Manley and Sanjay S. Dhall

OBJECT

Previous studies that have evaluated the prognostic value of abnormal changes in signals on T2-weighted MRI scans of an injured spinal cord have focused on the longitudinal extent of this signal abnormality in the sagittal plane. Although the transverse extent of injury and the degree of spared spinal cord white matter have been shown to be important for predicting outcomes in preclinical animal models of spinal cord injury (SCI), surprisingly little is known about the prognostic value of altered T2 relaxivity in humans in the axial plane.

METHODS

The authors undertook a retrospective chart review of 60 patients who met the inclusion criteria of this study and presented to the authors’ Level I trauma center with an acute blunt traumatic cervical SCI. Within 48 hours of admission, all patients underwent MRI examination, which included axial and sagittal T2 images. Neurological symptoms, evaluated with the grades according to the American Spinal Injury Association (ASIA) Impairment Scale (AIS), at the time of admission and at hospital discharge were correlated with MRI findings. Five distinct patterns of intramedullary spinal cord T2 signal abnormality were defined in the axial plane at the injury epicenter. These patterns were assigned ordinal values ranging from 0 to 4, referred to as the Brain and Spinal Injury Center (BASIC) scores, which encompassed the spectrum of SCI severity.

RESULTS

The BASIC score strongly correlated with neurological symptoms at the time of both hospital admission and discharge. It also distinguished patients initially presenting with complete injury who improved by at least one AIS grade by the time of discharge from those whose injury did not improve. The authors’ proposed score was rapid to apply and showed excellent interrater reliability.

CONCLUSIONS

The authors describe a novel 5-point ordinal MRI score for classifying acute SCIs on the basis of axial T2-weighted imaging. The proposed BASIC score stratifies the SCIs according to the extent of transverse T2 signal abnormality during the acute phase of the injury. The new score improves on current MRI-based prognostic descriptions for SCI by reflecting functionally and anatomically significant patterns of intramedullary T2 signal abnormality in the axial plane.

Free access

Ethan A. Winkler, John K. Yue, Harjus Birk, Caitlin K. Robinson, Geoffrey T. Manley, Sanjay S. Dhall and Phiroz E. Tarapore

OBJECT

Traumatic fractures of the thoracolumbar spine are common injuries, accounting for approximately 90% of all spinal trauma. Lumbar spine trauma in the elderly is a growing public health problem with relatively little evidence to guide clinical management. The authors sought to characterize the complications, morbidity, and mortality associated with surgical and nonsurgical management in elderly patients with traumatic fractures of the lumbar spine.

METHODS

Using the National Sample Program of the National Trauma Data Bank, the authors performed a retrospective analysis of patients ≥ 55 years of age who had traumatic fracture to the lumbar spine. This group was divided into middle-aged (55–69 years) and elderly (≥ 70 years) cohorts. Cohorts were subdivided into nonoperative, vertebroplasty or kyphoplasty, noninstrumented surgery, and instrumented surgery. Univariate and multivariable analyses were used to characterize and identify predictors of medical and surgical complications, mortality, hospital length of stay, ICU length of stay, number of days on ventilator, and hospital discharge in each subgroup. Adjusted odds ratios, mean differences, and associated 95% CIs were reported. Statistical significance was assessed at p < 0.05, and the Bonferroni correction for multiple comparisons was applied for each outcome analysis.

RESULTS

Between 2003 and 2012, 22,835 people met the inclusion criteria, which represents 94,103 incidents nationally. Analyses revealed a similar medical and surgical complication profile between age groups. The most prevalent medical complications were pneumonia (7.0%), acute respiratory distress syndrome (3.6%), and deep venous thrombosis (3%). Surgical site infections occurred in 6.3% of cases. Instrumented surgery was associated with the highest odds of each complication (p < 0.001). The inpatient mortality rate was 6.8% for all subjects. Multivariable analyses demonstrated that age ≥ 70 years was an independent predictor of mortality (OR 3.16, 95% CI 2.77–3.60), whereas instrumented surgery (multivariable OR 0.38, 95% CI 0.28–0.52) and vertebroplasty or kyphoplasty (OR 0.27, 95% CI 0.17–0.45) were associated with decreased odds of death. In surviving patients, both older age (OR 0.32, 95% CI 0.30–0.34) and instrumented fusion (OR 0.37, 95% CI 0.33–0.41) were associated with decreased odds of discharge to home.

CONCLUSIONS

The present study confirms that lumbar surgery in the elderly is associated with increased morbidity. In particular, instrumented fusion is associated with periprocedural complications, prolonged hospitalization, and a decreased likelihood of being discharged home. However, fusion surgery is also associated with reduced mortality. Age alone should not be an exclusionary factor in identifying surgical candidates for instrumented lumbar spinal fusion. Future studies are needed to confirm these findings.

Free access

Rishi Wadhwa, Praveen V. Mummaneni, Darryl Lau, Hai Le, Dean Chou and Sanjay S. Dhall

Object

The most common indications for circumferential cervical decompression and fusion are cervical spondylotic myelopathy (CSM) and cervical osteomyelitis (COM). Currently, the informed consent process prior to circumferential cervical fusion surgery is not different for these two groups of patients, as details of their diagnosis-specific risk profiles have not been quantified. The authors compared two patient cohorts with either CSM or COM treated using circumferential fusion. They sought to quantify perioperative morbidity and postoperative mortality in these two groups to assist with a diagnosis-specific informed consent process for future patients undergoing this type of surgery.

Methods

Perioperative and follow-up data from two cohorts of patients who had undergone circumferential cervical decompression and fusion were analyzed. Estimated blood loss (EBL), length of stay (LOS), perioperative complications, hospital readmission, 30-day reoperation rates, change in Nurick grade, and mortality were compared between the two groups.

Results

Twenty-two patients were in the COM cohort, and 24 were in the CSM cohort. Complications, hospital readmission, 30-day reoperation rates, EBL, and mortality were not statistically different, although patients with COM trended higher in each of these categories. There was a significantly greater LOS (p < 0.001) in the COM group and greater improvement in Nurick grade in the CSM group (p < 0.001).

Conclusions

When advising patients undergoing circumferential fusion about perioperative risk factors, it is important for those with COM to know that they are likely to have a higher rate of complications and mortality than those with CSM who are undergoing similar surgery. Furthermore, COM patients have less neurological improvement than CSM patients after surgery. This information may be useful to surgeons and patients in providing appropriate informed consent during preoperative planning.