Browse

You are looking at 1 - 2 of 2 items for

  • User-accessible content x
  • By Author: Belykh, Evgenii x
  • By Author: Preul, Mark C. x
  • By Author: Kalani, M. Yashar S. x
Clear All
Free access

Kaan Yagmurlu, Sam Safavi-Abbasi, Evgenii Belykh, M. Yashar S. Kalani, Peter Nakaji, Albert L. Rhoton Jr., Robert F. Spetzler and Mark C. Preul

OBJECTIVE

The aim of this investigation was to modify the mini-pterional and mini-orbitozygomatic (mini-OZ) approaches in order to reduce the amount of tissue traumatization caused and to compare the use of the 2 approaches in the removal of circle of Willis aneurysms based on the authors' clinical experience and quantitative analysis.

METHODS

Three formalin-fixed adult cadaveric heads injected with colored silicone were examined. Surgical freedom and angle of attack of the mini-pterional and mini-OZ approaches were measured at 9 anatomical points, and the measurements were compared. The authors also retrospectively reviewed the cases of 396 patients with ruptured and unruptured single aneurysms in the circle of Willis treated by microsurgical techniques at their institution between January 2006 and November 2014.

RESULTS

A significant difference in surgical freedom was found in favor of the mini-pterional approach for access to the ipsilateral internal carotid artery (ICA) and middle cerebral artery (MCA) bifurcations, the most distal point of the ipsilateral posterior cerebral artery (PCA), and the basilar artery (BA) tip. No statistically significant differences were found between the mini-pterional and mini-OZ approaches for access to the posterior clinoid process, the most distal point of the superior cerebellar artery (SCA), the anterior communicating artery (ACoA), the contralateral ICA bifurcation, and the most distal point of the contralateral MCA. A trend toward increasing surgical freedom was found for the mini-OZ approach to the ACoA and the contralateral ICA bifurcation. The lengths exposed through the mini-OZ approach were longer than those exposed by the mini-pterional approach for the ipsilateral PCA segment (11.5 ± 1.9 mm) between the BA and the most distal point of the P2 segment of the PCA, for the ipsilateral SCA (10.5 ± 1.1 mm) between the BA and the most distal point of the SCA, and for the contralateral anterior cerebral artery (ACA) (21 ± 6.1 mm) between the ICA bifurcation and the most distal point of the A2 segment of the ACA. The exposed length of the contralateral MCA (24.2 ± 8.6 mm) between the contralateral ICA bifurcation and the most distal point of the MCA segment was longer through the mini-pterional approach. The vertical angle of attack (anteroposterior direction) was significantly greater with the mini-pterional approach than with the mini-OZ approach, except in the ACoA and contralateral ICA bifurcation. The horizontal angle of attack (mediolateral direction) was similar with both approaches, except in the ACoA, contralateral ICA bifurcation, and contralateral MCA bifurcation, where the angle was significantly increased in the mini-OZ approach.

CONCLUSIONS

The mini-pterional and mini-OZ approaches, as currently performed in select patients, provide less tissue traumatization (i.e., less temporal muscle manipulation, less brain parenchyma retraction) from the skin to the aneurysm than standard approaches. Anatomical quantitative analysis showed that the mini-OZ approach provides better exposure to the contralateral side for controlling the contralateral parent arteries and multiple aneurysms. The mini-pterional approach has greater surgical freedom (maneuverability) for ipsilateral circle of Willis aneurysms.

Free access

Nikolay L. Martirosyan, Jennifer M. Eschbacher, M. Yashar S. Kalani, Jay D. Turner, Evgenii Belykh, Robert F. Spetzler, Peter Nakaji and Mark C. Preul

OBJECTIVE

This study evaluated the utility, specificity, and sensitivity of intraoperative confocal laser endomicroscopy (CLE) to provide diagnostic information during resection of human brain tumors.

METHODS

CLE imaging was used in the resection of intracranial neoplasms in 74 consecutive patients (31 male; mean age 47.5 years; sequential 10-month study period). Intraoperative in vivo and ex vivo CLE was performed after intravenous injection of fluorescein sodium (FNa). Tissue samples from CLE imaging–matched areas were acquired for comparison with routine histological analysis (frozen and permanent sections). CLE images were classified as diagnostic or nondiagnostic. The specificities and sensitivities of CLE and frozen sections for gliomas and meningiomas were calculated using permanent histological sections as the standard.

RESULTS

CLE images were obtained for each patient. The mean duration of intraoperative CLE system use was 15.7 minutes (range 3–73 minutes). A total of 20,734 CLE images were correlated with 267 biopsy specimens (mean number of images/biopsy location, in vivo 84, ex vivo 70). CLE images were diagnostic for 45.98% in vivo and 52.97% ex vivo specimens. After initiation of CLE, an average of 14 in vivo images and 7 ex vivo images were acquired before identification of a first diagnostic image. CLE specificity and sensitivity were, respectively, 94% and 91% for gliomas and 93% and 97% for meningiomas.

CONCLUSIONS

CLE with FNa provided intraoperative histological information during brain tumor removal. Specificities and sensitivities of CLE for gliomas and meningiomas were comparable to those for frozen sections. These data suggest that CLE could allow the interactive identification of tumor areas, substantially improving intraoperative decisions during the resection of brain tumors.