Browse

You are looking at 1 - 1 of 1 items for :

  • Refine by Access: user x
  • By Author: Tatum, William O. x
Clear All
Free access

Clinical outcome of imaging-based programming for anterior thalamic nucleus deep brain stimulation

Brin E. Freund, Elena Greco, Lela Okromelidze, Julio Mendez, William O. Tatum IV, Sanjeet S. Grewal, and Erik H. Middlebrooks

OBJECTIVE

The authors hypothesized that the proximity of deep brain stimulator contacts to the anterior thalamic nucleus–mammillothalamic tract (ANT-MMT) junction determines responsiveness to treatment with ANT deep brain stimulation (DBS) in drug-resistant epilepsy and conducted this study to test that hypothesis.

METHODS

This retrospective study evaluated patients who had undergone ANT DBS electrode implantation and whose devices were programmed to stimulate nearest the ANT-MMT junction based on direct MRI visualization. The proximity of the active electrode to the ANT and the ANT-MMT junction was compared between responders (≥ 50% reduction in seizure frequency) and nonresponders. Linear regression was performed to assess the percentage of seizure reduction and distance to both the ANT and the ANT-MMT junction.

RESULTS

Four (57.1%) of 7 patients had ≥ 50% reduction in seizures. All 4 responders had at least one contact within 1 mm of the ANT-MMT junction, whereas the 3 patients with < 50% seizure improvement did not have a contact within 1 mm of the ANT-MMT junction. Additionally, the 4 responders demonstrated contact positioning closer to the ANT-MMT junction than the 3 nonresponders (mean distance from MMT: 0.7 mm on the left and 0.6 mm on the right in responders vs 3.0 mm on the left and 2.3 mm on the right in nonresponders). However, proximity of the electrode contact to any point in the ANT nucleus did not correlate with seizure reduction. Greater seizure improvement was correlated with a contact position closer to the ANT-MMT junction (R2 = 0.62, p = 0.04). Seizure improvement was not significantly correlated with proximity of the contact to any ANT border (R2 = 0.24, p = 0.26).

CONCLUSIONS

Obtained using a combination of direct visualization and targeted programming of the ANT-MMT junction, data in this study support the hypothesis that proximity to the ANT alone does not correlate with seizure reduction in ANT DBS, whereas proximity to the ANT-MMT junction does. These findings support the importance of direct targeting in ANT DBS, as well as imaging-informed programming. Additionally, the authors provide supportive evidence for future prospective trials using ANT-MMT junction for direct surgical targeting.