Browse

You are looking at 91 - 100 of 37,171 items for

  • Refine by Access: all x
Clear All
Restricted access

Eiji Takasawa, Naohiro Kawamura, Yoichi Iizuka, Junichi Ohya, Yuki Onishi, Junichi Kunogi, and Hirotaka Chikuda

OBJECTIVE

Proximal junctional kyphosis (PJK), which can worsen a patient’s quality of life, is a common complication following the surgical treatment of adult spinal deformity (ASD). Although various radiographic parameters have been proposed to predict the occurrence of PJK, the optimal method has not been established. The present study aimed to investigate the usefulness of the T1–L1 pelvic angle in the standing position (standing TLPA) for predicting the occurrence of PJK.

METHODS

The authors retrospectively extracted data for patients with ASD who underwent minimum 5-level fusion to the pelvis with upper instrumented vertebra between T8 and L1. In the present study, PJK was defined as ≥ 10° progression of the proximal junctional angle or reoperation due to progressive kyphosis during 1 year of follow-up. The following parameters were analyzed on whole-spine standing radiographs: the T1–pelvic angle, conventional thoracic kyphosis (TK; T4–12), whole-thoracic TK (T1–12), and the standing TLPA (defined as the angle formed by lines extending from the center of T1 and L1 to the femoral head axis). A logistic regression analysis and a receiver operating characteristic curve analysis were performed.

RESULTS

A total of 50 patients with ASD were enrolled (84% female; mean age 74.4 years). PJK occurred in 19 (38%) patients. Preoperatively, the PJK group showed significantly greater T1–pelvic angle (49.2° vs 34.4°), conventional TK (26.6° vs 17.6°), and standing-TLPA (30.0° vs 14.9°) values in comparison to the non-PJK group. There was no significant difference in the whole-thoracic TK between the two groups. A multivariate analysis showed that the standing TLPA and whole-thoracic TK were independent predictors of PJK. The standing TLPA had better accuracy than whole-thoracic TK (AUC 0.86 vs 0.64, p = 0.03). The optimal cutoff value of the standing TLPA was 23.0° (sensitivity 0.79, specificity 0.74). Using this cutoff value, the standing TLPA was the best predictor of PJK (OR 8.4, 95% CI 1.8–39, p = 0.007).

CONCLUSIONS

The preoperative standing TLPA was more closely associated with the occurrence of PJK than other radiographic parameters. These results suggest that this easily measured parameter is useful for the prediction of PJK.

Restricted access

Adomas Bunevicius, Stylianos Pikis, Douglas Kondziolka, Dev N. Patel, Kenneth Bernstein, Erik P. Sulman, Cheng-chia Lee, Huai-che Yang, Violaine Delabar, David Mathieu, Christopher P. Cifarelli, David E. Arsanious, Basem A. Dahshan, Joshua S. Weir, Herwin Speckter, Angel Mota, Manjul Tripathi, Narendra Kumar, Ronald E. Warnick, and Jason P. Sheehan

OBJECTIVE

Molecular profiles, such as isocitrate dehydrogenase (IDH) mutation and O 6-methylguanine-DNA methyltransferase (MGMT) methylation status, have important prognostic roles for glioblastoma patients. The authors studied the efficacy and safety of stereotactic radiosurgery (SRS) for glioblastoma patients with consideration of molecular tumor profiles.

METHODS

For this retrospective observational multiinstitutional study, the authors pooled consecutive patients who were treated using SRS for glioblastoma at eight institutions participating in the International Radiosurgery Research Foundation. They evaluated predictors of overall and progression-free survival with consideration of IDH mutation and MGMT methylation status.

RESULTS

Ninety-six patients (median age 56 years) underwent SRS (median dose 15 Gy and median treatment volume 5.53 cm3) at 147 tumor sites (range 1 to 7). The majority of patients underwent prior fractionated radiation therapy (92%) and temozolomide chemotherapy (98%). Most patients were treated at recurrence (85%), and boost SRS was used for 12% of patients. The majority of patients harbored IDH wild-type (82%) and MGMT-methylated (62%) tumors. Molecular data were unavailable for 33 patients. Median survival durations after SRS were similar between patients harboring IDH wild-type tumors and those with IDH mutant tumors (9.0 months vs 11 months, respectively), as well as between those with MGMT-methylated tumors and those with MGMT-unmethylated tumors (9.8 vs. 9.0 months, respectively). Prescription dose > 15 Gy (OR 0.367, 95% CI 0.190–0.709, p = 0.003) and treatment volume > 5 cm3 (OR 1.036, 95% CI 1.007–1.065, p = 0.014) predicted overall survival after controlling for age and IDH status. Treatment volume > 5 cm3 (OR 2.215, 95% CI 1.159–4.234, p = 0.02) and absence of gross-total resection (OR 0.403, 95% CI 0.208–0.781, p = 0.007) were associated with inferior local control of SRS-treated lesions in multivariate models. Nine patients experienced adverse radiation events after SRS, and 7 patients developed radiation necrosis at 59 to 395 days after SRS.

CONCLUSIONS

Post-SRS survival was similar as a function of IDH mutation and MGMT promoter methylation status, suggesting that molecular profiles of glioblastoma should be considered when selecting candidates for SRS. SRS prescription dose > 15 Gy and treatment volume ≤ 5 cm3 were associated with longer survival, independent of age and IDH status. Prior gross-total resection and smaller treatment volume were associated with superior local control.

Restricted access

Andrew K. Chan, Robert K. Eastlack, Richard G. Fessler, Khoi D. Than, Dean Chou, Kai-Ming Fu, Paul Park, Michael Y. Wang, Adam S. Kanter, David O. Okonkwo, Pierce D. Nunley, Neel Anand, Juan S. Uribe, Gregory M. Mundis Jr., Shay Bess, Christopher I. Shaffrey, Vivian P. Le, Praveen V. Mummaneni, and the International Spine Study Group

OBJECTIVE

Previous studies have demonstrated the short-term radiographic and clinical benefits of circumferential minimally invasive surgery (cMIS) and hybrid (i.e., minimally invasive anterior or lateral interbody fusion with an open posterior approach) techniques to correct adult spinal deformity (ASD). However, it is not known if these benefits are maintained over longer periods of time. This study evaluated the 2- and 3-year outcomes of cMIS and hybrid correction of ASD.

METHODS

A multicenter database was retrospectively reviewed for patients undergoing cMIS or hybrid surgery for ASD. Patients were ≥ 18 years of age and had one of the following: maximum coronal Cobb angle (CC) ≥ 20°, sagittal vertical axis (SVA) > 5 cm, pelvic incidence–lumbar lordosis mismatch (PI-LL) ≥ 10°, or pelvic tilt (PT) > 20°. Radiographic parameters were evaluated at the latest follow-up. Clinical outcomes were compared at 2- and 3-year time points and adjusted for age, preoperative CC, levels operated, levels with interbody fusion, presence of L5–S1 anterior lumbar interbody fusion, and upper and lower instrumented vertebral level.

RESULTS

Overall, 197 (108 cMIS, 89 hybrid) patients were included with 187 (99 cMIS, 88 hybrid) and 111 (60 cMIS, 51 hybrid) patients evaluated at 2 and 3 years, respectively. The mean (± SD) follow-up duration for cMIS (39.0 ± 13.3 months, range 22–74 months) and hybrid correction (39.9 ± 16.8 months, range 22–94 months) were similar for both cohorts. Hybrid procedures corrected the CC greater than the cMIS technique (adjusted p = 0.022). There were no significant differences in postoperative SVA, PI-LL, PT, and sacral slope (SS). At 2 years, cMIS had lower Oswestry Disability Index (ODI) scores (adjusted p < 0.001), greater ODI change as a percentage of baseline (adjusted p = 0.006), less visual analog scale (VAS) back pain (adjusted p = 0.006), and greater VAS back pain change as a percentage of baseline (adjusted p = 0.001) compared to hybrid techniques. These differences were no longer significant at 3 years. At 3 years, but not 2 years, VAS leg pain was lower for cMIS compared to hybrid techniques (adjusted p = 0.032). Those undergoing cMIS had fewer overall complications compared to hybrid techniques (adjusted p = 0.006), but a higher odds of pseudarthrosis (adjusted p = 0.039).

CONCLUSIONS

In this review of a multicenter database for patients undergoing cMIS and hybrid surgery for ASD, hybrid procedures were associated with a greater CC improvement compared to cMIS techniques. cMIS was associated with superior ODI and back pain at 2 years, but this difference was no longer evident at 3 years. However, cMIS was associated with superior leg pain at 3 years. There were fewer complications following cMIS, with the exception of pseudarthrosis.

Restricted access

Renaud Lafage, Justin S. Smith, Basel Sheikh Alshabab, Christopher Ames, Peter G. Passias, Christopher I. Shaffrey, Gregory Mundis Jr., Themistocles Protopsaltis, Munish Gupta, Eric Klineberg, Han Jo Kim, Shay Bess, Frank Schwab, Virginie Lafage, and on behalf of the International Spine Study Group (ISSG)

OBJECTIVE

Cervical deformity (CD) is a complex condition with a clear impact on patient quality of life, which can be improved with surgical treatment. Previous study following thoracolumbar surgery demonstrated a spontaneous and maintained improvement in cervical alignment following lumbar pedicle subtraction osteotomy (PSO). In this study the authors aimed to investigate the complementary questions of whether cervical alignment induces a change in global alignment and whether this change stabilizes over time.

METHODS

To analyze spontaneous changes, this study included only patients with at least 5 levels remaining unfused following surgery. After data were obtained for the entire cohort, repeated-measures analyses were conducted between preoperative baseline and 3-month and 1-year follow-ups with a post hoc analysis and Bonferroni correction. A subanalysis of patients with 2-year follow-up was performed.

RESULTS

One-year follow-up data were available for 121 of 168 patients (72%), and 89 patients had at least 5 levels remaining unfused following surgery. Preoperatively there was a moderate anterior cervical alignment (C2–7, −7.7° [kyphosis]; T1 slope minus cervical lordosis, 37.1°; cervical sagittal vertebral axis [cSVA], 37 mm) combined with a posterior global alignment (SVA, −8 mm) with lumbar hyperextension (pelvic incidence [PI] minus lumbar lordosis [LL] mismatch [PI-LL], −0.6°). Patients underwent a significant correction of the cervical alignment (median ΔC2–7, 13.6°). Simultaneously, PI-LL, T1 pelvic angle (TPA), and SVA increased significantly (all p < 0.05) between baseline and 3-month and 1-year follow-ups. Post hoc analysis demonstrated that all of the changes occurred between baseline and 3 months. Subanalysis of patients with complete 2-year follow-up demonstrated similar results, with stable postoperative thoracolumbar alignment achieved at 3 months.

CONCLUSIONS

Correction of cervical malalignment can have a significant impact on thoracolumbar regional and global alignment. Peak relaxation of compensatory mechanisms is achieved by the 3-month follow-up and tends to remain stable. Subanalysis with 2-year data further supports this finding. These findings can help to identify when the results of cervical surgery on global alignment can be best evaluated.

Restricted access

Eylem Ocal, Eliana E. Kim, Milagros Niquen-Jimenez, Gleice Salibe de Oliveira, Souad Bakhti, Suchanda Bhattacharjee, Giselle Coelho, Wirginia Maixner, Martina Messing-Jünger, Nabila Taghlit, and Nelci Zanon

Pediatric neurosurgery is an ever-evolving field, and at the heart of it are talented and hardworking neurosurgeons who harness technology and research to enhance the standard of neurosurgical care for children. Recent studies have found that female neurosurgeons tend to choose a career focused on pediatric neurosurgery more than other subspecialties. However, the achievements and contributions of women in pediatric neurosurgery are not well known. To address this, an international working group of pediatric neurosurgeons was established from the World Federation of Neurosurgical Societies (WFNS) Women in Neurosurgery (WINS) group and Pediatric Neurosurgery Committee. The working group reviewed the current literature and collected information through personal communications with the global WINS network. Despite the increasing number of women entering neurosurgical training, the number of female pediatric neurosurgeons is still a mere handful worldwide. In this article, the authors summarize the current status of female pediatric neurosurgeons across the globe, highlighting their achievements as well as the gender bias and challenges that they face at every level of progression of their career. A better organized pediatric neurosurgery workforce, with more female representation and mentorship, would encourage future generations of diverse genders toward a career in this field.

Open access

Masato Ito, Yoshinori Higuchi, Kentaro Horiguchi, Shigeki Nakano, Shinichi Origuchi, Kyoko Aoyagi, Toru Serizawa, Iwao Yamakami, and Yasuo Iwadate

BACKGROUND

Anatomical variations, such as high jugular bulbs and air cell development in the petrosal bone, should be evaluated before surgery. Most bone defects in the internal auditory canal (IAC) posterior wall are observed in the perilabyrinthine cells. An aberrant vascular structure passing through the petrous bone is rare.

OBSERVATIONS

A 48-year-old man presented with a right ear hearing disturbance. Magnetic resonance imaging revealed a 23-mm contrast-enhancing mass in the right cerebellopontine angle extending into the IAC, consistent with a right vestibular schwannoma. Preoperative bone window computed tomographic scans showed bone defects in the IAC posterior wall, which ran farther posteroinferiorly in the petrous bone, reaching the medial part of the jugular bulb. The tumor was accessed via a lateral suboccipital approach. There was no other major vein in the cerebellomedullary cistern, except for the vein running from the brain stem to the IAC posterior wall. To avoid complications due to venous congestion, the authors did not drill out the IAC posterior wall or remove the tumor in the IAC.

LESSONS

Several aberrant veins in the petrous bone are primitive head sinus remnants. Although rare, their surgical implication is critical in patients with vestibular schwannomas.

Free access

Mohamad Bydon, Anshit Goyal, Aaron Biedermann, Allie J. Canoy Illies, Travis Paul, Abdul Karim Ghaith, Bernard Bendok, Alfredo Quiñones-Hinojosa, Robert J. Spinner, and Fredric B. Meyer

In an era when healthcare “value” remains a much-emphasized concept, measuring and reporting the quality of neurosurgical care and costs remains a challenge for large multisite health systems. Ensuring cohesion in outcomes across multiple sites is important to the development of a holistic competitive marketing strategy that seeks to promote “brand” performance characterized by a superior quality of patient care. This requires mechanisms for data collection and development of a single uniform outcomes measurement system site wide. Operationalizing a true multidisciplinary effort in this space requires intersection of a vast array of information technology and administrative resources along with the neurosurgeons who provide subject-matter expertise relevant to patient care. To measure neurosurgical quality and safety as well as improve payor contract negotiations, a practice analytics dashboard was created to allow summary visualization of operational indicators such as case volumes, quality outcomes, and relative value units and financial indicators such as total hospital costs and charges in order to provide a comprehensive overview of the “value” of surgical care. The current version of the dashboard summarizes these metrics by site, surgeon, and procedure for nearly 30,000 neurosurgical procedures that have been logged into the Mayo Clinic Enterprise Neurosurgery Registry since transition to the Epic electronic health record (EHR) system. In this article, the authors sought to review their experience in launching this EHR-linked data-driven neurosurgical practice initiative across a large, national multisite academic medical center.

Free access

Thara Tunthanathip, Jarunee Duangsuwan, Niwan Wattanakitrungroj, Sasiporn Tongman, and Nakornchai Phuenpathom

OBJECTIVE

The overuse of head CT examinations has been much discussed, especially those for minor traumatic brain injury (TBI). In the disruptive era, machine learning (ML) is one of the prediction tools that has been used and applied in various fields of neurosurgery. The objective of this study was to compare the predictive performance between ML and a nomogram, which is the other prediction tool for intracranial injury following cranial CT in children with TBI.

METHODS

Data from 964 pediatric patients with TBI were randomly divided into a training data set (75%) for hyperparameter tuning and supervised learning from 14 clinical parameters, while the remaining data (25%) were used for validation purposes. Moreover, a nomogram was developed from the training data set with similar parameters. Therefore, models from various ML algorithms and the nomogram were built and deployed via web-based application.

RESULTS

A random forest classifier (RFC) algorithm established the best performance for predicting intracranial injury following cranial CT of the brain. The area under the receiver operating characteristic curve for the performance of RFC algorithms was 0.80, with 0.34 sensitivity, 0.95 specificity, 0.73 positive predictive value, 0.80 negative predictive value, and 0.79 accuracy.

CONCLUSIONS

The ML algorithms, particularly the RFC, indicated relatively excellent predictive performance that would have the ability to support physicians in balancing the overuse of head CT scans and reducing the treatment costs of pediatric TBI in general practice.

Open access

Alan R. Tang, Joseline Haizel-Cobbina, Paisit Paueksakon, Asha Sarma, Julie Bennett, Adam J. Esbenshade, and Michael C. Dewan

BACKGROUND

Neurofibromatosis type 1 (NF-1) is a neurocutaneous autosomal dominant disorder that predisposes patients to develop intracranial low-grade gliomas (LGGs). Most LGGs in patients with NF-1 involve the optic pathway but can arise anywhere throughout the central nervous system. NF-1–related disseminated pediatric LGG (dPLGG) in the absence of a dominant optic pathway glioma has not been described.

OBSERVATIONS

The authors discussed a case of a 10-year-old boy who presented with consideration for biopsy with nonoptic pathway PLGG with craniospinal dPLGG in the setting of NF-1. The patient’s primary lesion, located in the right medulla, was initially treated with surveillance before induction chemotherapy with carboplatin and vincristine was initiated. However, surveillance imaging demonstrated significant increase in size and enhancement, and subsequent craniospinal imaging demonstrated extensive nodular dissemination in the cervicothoracic spine. A biopsy and molecular testing were subsequently performed to further evaluate the tumor, and the patient was diagnosed with dPLGG with CDKN2A deletion.

LESSONS

Thorough craniospinal magnetic resonance imaging evaluation and biopsy in nonoptic pathway–dominant brain lesions in NF-1 are warranted in patients with atypical clinical and radiological findings in whom standard chemotherapeutic therapy fails.