Browse

You are looking at 1 - 10 of 14 items for

  • Refine by Access: all x
  • By Author: Smith, Justin S. x
  • By Author: Fu, Kai-Ming G. x
Clear All
Restricted access

Kai-Ming G. Fu, Justin S. Smith, David W. Polly Jr., Joseph H. Perra, Charles A. Sansur, Sigurd H. Berven, Paul A. Broadstone, Theodore J. Choma, Michael J. Goytan, Hilali H. Noordeen, D. Raymond Knapp Jr., Robert A. Hart, Reinhard D. Zeller, William F. Donaldson III, Oheneba Boachie-Adjei, and Christopher I. Shaffrey

Object

The purpose of this study was to evaluate the prospectively collected Scoliosis Research Society (SRS) database to assess the incidences of morbidity and mortality (M&M) in the operative treatment of degenerative lumbar stenosis, one of the most common procedures performed by spine surgeons.

Methods

All patients who underwent surgical treatment for degenerative lumbar stenosis between 2004 and 2007 were identified from the SRS M&M database. Inclusion criteria for analysis included an age ≥ 21 years and no history of lumbar surgery. Patients were treated with either decompression alone or decompression with concomitant fusion. Statistical comparisons were performed using a 2-sided Fisher exact test.

Results

Of the 10,329 patients who met the inclusion criteria, 6609 (64%) were treated with decompression alone, and 3720 (36%) were treated with decompression and fusion. Among those who underwent fusion, instrumentation was placed in 3377 (91%). The overall mean patient age was 63 ± 13 years (range 21–96 years). Seven hundred nineteen complications (7.0%), including 13 deaths (0.1%), were identified. New neurological deficits were reported in 0.6% of patients. Deaths were related to cardiac (4 cases), respiratory (5 cases), pulmonary embolus (2 cases), and sepsis (1 case) etiologies, and a perforated gastric ulcer (1 case). Complication rates did not differ based on patient age or whether fusion was performed. Minimally invasive procedures were associated with fewer complications and fewer new neurological deficits (p = 0.01 and 0.03, respectively).

Conclusions

The results from this analysis of the SRS M&M database provide surgeons with useful information for preoperative counseling of patients contemplating surgical intervention for symptomatic degenerative lumbar stenosis.

Restricted access

Kai-Ming G. Fu, Justin S. Smith, David W. Polly Jr., Christopher P. Ames, Sigurd H. Berven, Joseph H. Perra, Steven D. Glassman, Richard E. McCarthy, D. Raymond Knapp Jr., Christopher I. Shaffrey, and Scoliosis Research Society Morbidity and Mortality Committee

Object

Currently, few studies regarding morbidity and mortality associated with operative treatment of spinal disorders in children are available to guide the surgeon. This study provides more detailed morbidity and mortality data with an analysis of 23,918 pediatric cases reported in the multicenter, multisurgeon Scoliosis Research Society morbidity and mortality database.

Methods

The Scoliosis Research Society morbidity and mortality database was queried for the years from 2004 to 2007. The inclusion criterion was age 18 years or younger. Cases were categorized by operation type and diagnosis. Details on the surgical approach, use of neurophysiological monitoring, and type of instrumentation were recorded. Major perioperative complications and deaths were evaluated. Statistical analysis was performed with chi-square testing, with a p value < 0.05 considered significant.

Results

A total of 23,918 patients were included. The mean age was 13 ± 3.6 years (± SD). Spinal pathology included the following: scoliosis (in 19,642 patients), kyphosis (in 1455), spondylolisthesis (in 748), trauma (in 478), and other (in 1595 patients). The overall complication rate was 8.5%. Major complications included wound infections (2.7%), new neurological deficits (1.4%), implant-related complications (1.6%), and hematomas (0.4%). The most common medical complications were respiratory related (0.9%). Morbidity rates differed based on pathology, with patients undergoing treatment for kyphosis and spondylolisthesis having higher overall rates of morbidity (14.7% and 9.6%, respectively). Patients undergoing revision procedures (2034) or corrective osteotomies (2787) were more likely to suffer a complication or new neurological deficit. The majority of these deficits improved at least partially. Thirty-one deaths were reported for an overall rate of 1.3 per 1000. Respiratory complications were the most common cause of mortality (13 cases). Twenty-six of the deaths occurred in children undergoing scoliosis correction.

Conclusions

Spinal surgery in children is associated with a range of complications depending on the type of operation. Mortality rates for all indications and operations were low. Patients undergoing more aggressive corrective procedures for deformity are more likely to suffer complications and new neurological deficits.

Restricted access

Kai-Ming G. Fu, Justin S. Smith, David W. Polly Jr., Christopher P. Ames, Sigurd H. Berven, Joseph H. Perra, Richard E. McCarthy, D. Raymond Knapp Jr., and Christopher I. Shaffrey

Object

Patients with varied medical comorbidities often present with spinal pathology for which operative intervention is potentially indicated, but few studies have examined risk stratification in determining morbidity and mortality rates associated with the operative treatment of spinal disorders. This study provides an analysis of morbidity and mortality data associated with 22,857 cases reported in the multicenter, multisurgeon Scoliosis Research Society Morbidity and Mortality database stratified by American Society of Anesthesiologists (ASA) physical status classification, a commonly used system to describe preoperative physical status and to predict operative morbidity.

Methods

The Scoliosis Research Society Morbidity and Mortality database was queried for the year 2007, the year in which ASA data were collected. Inclusion criterion was a reported ASA grade. Cases were categorized by operation type and disease process. Details on the surgical approach and type of instrumentation were recorded. Major perioperative complications and deaths were evaluated. Two large subgroups—patients with adult degenerative lumbar disease and patients with major deformity—were also analyzed separately. Statistical analyses were performed with the chi-square test.

Results

The population studied comprised 22,857 patients. Spinal disease included degenerative disease (9409 cases), scoliosis (6782 cases), spondylolisthesis (2144 cases), trauma (1314 cases), kyphosis (831 cases), and other (2377 cases). The overall complication rate was 8.4%. Complication rates for ASA Grades 1 through 5 were 5.4%, 9.0%, 14.4%, 20.3%, and 50.0%, respectively (p = 0.001). In patients undergoing surgery for degenerative lumbar diseases and major adult deformity, similarly increasing rates of morbidity were found in higher-grade patients. The mortality rate was also higher in higher-grade patients. The incidence of major complications, including wound infections, hematomas, respiratory problems, and thromboembolic events, was also greater in patients with higher ASA grades.

Conclusions

Patients with higher ASA grades undergoing spinal surgery had significantly higher rates of morbidity than those with lower ASA grades. Given the common application of the ASA system to surgical patients, this grade may prove helpful for surgical decision making and preoperative counseling with regard to risks of morbidity and mortality.

Restricted access

Manish K. Kasliwal, Justin S. Smith, Christopher I. Shaffrey, Leah Y. Carreon, Steven D. Glassman, Frank Schwab, Virginie Lafage, Kai-Ming G. Fu, and Keith H. Bridwell

Object

In many adults with scoliosis, symptoms can be principally referable to focal pathology and can be addressed with short-segment procedures, such as decompression with or without fusion. A number of patients subsequently require more extensive scoliosis correction. However, there is a paucity of data on the impact of prior short-segment surgeries on the outcome of subsequent major scoliosis correction, which could be useful in preoperative counseling and surgical decision making. The authors' objective was to assess whether prior focal decompression or short-segment fusion of a limited portion of a larger spinal deformity impacts surgical parameters and clinical outcomes in patients who subsequently require more extensive scoliosis correction surgery.

Methods

The authors conducted a retrospective cohort analysis with propensity scoring, based on a prospective multicenter deformity database. Study inclusion criteria included a patient age ≥ 21 years, a primary diagnosis of untreated adult idiopathic or degenerative scoliosis with a Cobb angle ≥ 20°, and available clinical outcome measures at a minimum of 2 years after scoliosis surgery. Patients with prior short-segment surgery (< 5 levels) were propensity matched to patients with no prior surgery based on patient age, Oswestry Disability Index (ODI), Cobb angle, and sagittal vertical axis.

Results

Thirty matched pairs were identified. Among those patients who had undergone previous spine surgery, 30% received instrumentation, 40% underwent arthrodesis, and the mean number of operated levels was 2.4 ± 0.9 (mean ± SD). As compared with patients with no history of spine surgery, those who did have a history of prior spine surgery trended toward greater blood loss and an increased number of instrumented levels and did not differ significantly in terms of complication rates, duration of surgery, or clinical outcome based on the ODI, Scoliosis Research Society-22r, or 12-Item Short Form Health Survey Physical Component Score (p > 0.05).

Conclusions

Patients with adult scoliosis and a history of short-segment spine surgery who later undergo more extensive scoliosis correction do not appear to have significantly different complication rates or clinical improvements as compared with patients who have not had prior short-segment surgical procedures. These findings should serve as a basis for future prospective study.

Restricted access

Woojin Cho, Jonathan R. Mason, Justin S. Smith, Adam L. Shimer, Adam S. Wilson, Christopher I. Shaffrey, Francis H. Shen, Wendy M. Novicoff, Kai-Ming G. Fu, Joshua E. Heller, and Vincent Arlet

Object

Lumbopelvic fixation provides biomechanical support to the base of the long constructs used for adult spinal deformity. However, the failure rate of the lumbopelvic fixation and its risk factors are not well known. The authors' objective was to report the failure rate and risk factors for lumbopelvic fixation in long instrumented spinal fusion constructs performed for adult spinal deformity.

Methods

This retrospective review included 190 patients with adult spinal deformity who had long construct instrumentation (> 6 levels) with iliac screws. Patients' clinical and radiographic data were analyzed. The patients were divided into 2 groups: a failure group and a nonfailure group. A minimum 2-year follow-up was required for inclusion in the nonfailure group. In the failure group, all patients were included in the study regardless of whether the failure occurred before or after 2 years. In both groups, the patients who needed a revision for causes other than lumbopelvic fixation (for example, proximal junctional kyphosis) were also excluded. Failures were defined as major and minor. Major failures included rod breakage between L-4 and S-1, failure of S-1 screws (breakage, halo formation, or pullout), and prominent iliac screws requiring removal. Minor failures included rod breakage between S-1 and iliac screws and failure of iliac screws. Minor failures did not require revision surgery. Multiple clinical and radiographic values were compared between major failures and nonfailures.

Results

Of 190 patients, 67 patients met inclusion criteria and were enrolled in the study. The overall failure rate was 34.3%; 8 patients had major failure (11.9%) and 15 had minor failure (22.4%). Major failure occurred at a statistically significant greater rate in patients who had undergone previous lumbar surgery, had greater pelvic incidence, and had poor restoration of lumbar lordosis and/or sagittal balance (that is, undercorrection). Patients with a greater number of comorbidities and preoperative coronal imbalance showed trends toward an increase in major failures, although these trends did not reach statistical significance. Age, sex, body mass index, smoking history, number of fusion segments, fusion grade, and several other radiographic values were not shown to be associated with an increased risk of major failure. Seventy percent of patients in the major failure group had anterior column support (anterior lumbar interbody fusion or transforaminal lumbar interbody fusion) while 80% of the nonfailure group had anterior column support.

Conclusions

The incidence of overall failure was 34.3%, and the incidence of clinically significant major failure of lumbopelvic fixation after long construct fusion for adult spinal deformity was 11.9%. Risk factors for major failures are a large pelvic incidence, revision surgery, and failure to restore lumbar lordosis and sagittal balance. Surgeons treating adult spinal deformity who use lumbopelvic fixation should pay special attention to restoring optimal sagittal alignment to prevent lumbopelvic fixation failure.

Free access

Praveen V. Mummaneni, Christopher I. Shaffrey, Lawrence G. Lenke, Paul Park, Michael Y. Wang, Frank La Marca, Justin S. Smith, Gregory M. Mundis Jr., David O. Okonkwo, Bertrand Moal, Richard G. Fessler, Neel Anand, Juan S. Uribe, Adam S. Kanter, Behrooz Akbarnia, and Kai-Ming G. Fu

Object

Minimally invasive surgery (MIS) is an alternative to open deformity surgery for the treatment of patients with adult spinal deformity. However, at this time MIS techniques are not as versatile as open deformity techniques, and MIS techniques have been reported to result in suboptimal sagittal plane correction or pseudarthrosis when used for severe deformities. The minimally invasive spinal deformity surgery (MISDEF) algorithm was created to provide a framework for rational decision making for surgeons who are considering MIS versus open spine surgery.

Methods

A team of experienced spinal deformity surgeons developed the MISDEF algorithm that incorporates a patient's preoperative radiographic parameters and leads to one of 3 general plans ranging from MIS direct or indirect decompression to open deformity surgery with osteotomies. The authors surveyed fellowship-trained spine surgeons experienced with spinal deformity surgery to validate the algorithm using a set of 20 cases to establish interobserver reliability. They then resurveyed the same surgeons 2 months later with the same cases presented in a different sequence to establish intraobserver reliability. Responses were collected and tabulated. Fleiss' analysis was performed using MATLAB software.

Results

Over a 3-month period, 11 surgeons completed the surveys. Responses for MISDEF algorithm case review demonstrated an interobserver kappa of 0.58 for the first round of surveys and an interobserver kappa of 0.69 for the second round of surveys, consistent with substantial agreement. In at least 10 cases there was perfect agreement between the reviewing surgeons. The mean intraobserver kappa for the 2 surveys was 0.86 ± 0.15 (± SD) and ranged from 0.62 to 1.

Conclusions

The use of the MISDEF algorithm provides consistent and straightforward guidance for surgeons who are considering either an MIS or an open approach for the treatment of patients with adult spinal deformity. The MISDEF algorithm was found to have substantial inter- and intraobserver agreement. Although further studies are needed, the application of this algorithm could provide a platform for surgeons to achieve the desired goals of surgery.

Restricted access

Justin S. Smith, Ellen Shaffrey, Eric Klineberg, Christopher I. Shaffrey, Virginie Lafage, Frank J. Schwab, Themistocles Protopsaltis, Justin K. Scheer, Gregory M. Mundis Jr., Kai-Ming G. Fu, Munish C. Gupta, Richard Hostin, Vedat Deviren, Khaled Kebaish, Robert Hart, Douglas C. Burton, Breton Line, Shay Bess, Christopher P. Ames, and The International Spine Study Group

Object

Improved understanding of rod fracture (RF) following adult spinal deformity (ASD) surgery could prove valuable for surgical planning, patient counseling, and implant design. The objective of this study was to prospectively assess the rates of and risk factors for RF following surgery for ASD.

Methods

This was a prospective, multicenter, consecutive series. Inclusion criteria were ASD, age > 18 years, ≥5 levels posterior instrumented fusion, baseline full-length standing spine radiographs, and either development of RF or full-length standing spine radiographs obtained at least 1 year after surgery that demonstrated lack of RF. ASD was defined as presence of at least one of the following: coronal Cobb angle ≥20°, sagittal vertical axis (SVA) ≥5 cm, pelvic tilt (PT) ≥25°, and thoracic kyphosis ≥60°.

Results

Of 287 patients who otherwise met inclusion criteria, 200 (70%) either demonstrated RF or had radiographic imaging obtained at a minimum of 1 year after surgery showing lack of RF. The patients' mean age was 54.8 ± 15.8 years; 81% were women; 10% were smokers; the mean body mass index (BMI) was 27.1 ± 6.5; the mean number of levels fused was 12.0 ± 3.8; and 50 patients (25%) had a pedicle subtraction osteotomy (PSO). The rod material was cobalt chromium (CC) in 53%, stainless steel (SS), in 26%, or titanium alloy (TA) in 21% of cases; the rod diameters were 5.5 mm (in 68% of cases), 6.0 mm (in 13%), or 6.35 mm (in 19%). RF occurred in 18 cases (9.0%) at a mean of 14.7 months (range 3–27 months); patients without RF had a mean follow-up of 19 months (range 12–24 months). Patients with RF were older (62.3 vs 54.1 years, p = 0.036), had greater BMI (30.6 vs 26.7, p = 0.019), had greater baseline sagittal malalignment (SVA 11.8 vs 5.0 cm, p = 0.001; PT 29.1° vs 21.9°, p = 0.016; and pelvic incidence [PI]–lumbar lordosis [LL] mismatch 29.6° vs 12.0°, p = 0.002), and had greater sagittal alignment correction following surgery (SVA reduction by 9.6 vs 2.8 cm, p < 0.001; and PI-LL mismatch reduction by 26.3° vs 10.9°, p = 0.003). RF occurred in 22.0% of patients with PSO (10 of the 11 fractures occurred adjacent to the PSO level), with rates ranging from 10.0% to 31.6% across centers. CC rods were used in 68% of PSO cases, including all with RF. Smoking, levels fused, and rod diameter did not differ significantly between patients with and without RF (p > 0.05). In cases including a PSO, the rate of RF was significantly higher with CC rods than with TA or SS rods (33% vs 0%, p = 0.010). On multivariate analysis, only PSO was associated with RF (p = 0.001, OR 5.76, 95% CI 2.01–15.8).

Conclusions

Rod fracture occurred in 9.0% of ASD patients and in 22.0% of PSO patients with a minimum of 1-year follow-up. With further follow-up these rates would likely be even higher. There was a substantial range in the rate of RF with PSO across centers, suggesting potential variations in technique that warrant future investigation. Due to higher rates of RF with PSO, alternative instrumentation strategies should be considered for these cases.