Browse

You are looking at 1 - 5 of 5 items for

  • Refine by Access: all x
  • By Author: Lunsford, L. Dade x
  • By Author: Yang, Huai-Che x
Clear All
Restricted access

Stylianos Pikis, Adomas Bunevicius, Cheng-Chia Lee, Huai-Che Yang, Brad E. Zacharia, Roman Liščák, Gabriela Simonova, Manjul Tripathi, Narendra Kumar, David Mathieu, Rémi Perron, Selcuk Peker, Yavuz Samanci, Jason Gurewitz, Kenneth Bernstein, Douglas Kondziolka, Ajay Niranjan, L. Dade Lunsford, Nikolaos Mantziaris, and Jason P. Sheehan

OBJECTIVE

As novel therapies improve survival for men with prostate cancer, intracranial metastatic disease has become more common. The purpose of this multicenter study was to evaluate the safety and efficacy of stereotactic radiosurgery (SRS) in the management of intracranial prostate cancer metastases.

METHODS

Demographic data, primary tumor characteristics, SRS treatment parameters, and clinical and imaging follow-up data of patients from nine institutions treated with SRS from July 2005 to June 2020 for cerebral metastases from prostate carcinoma were collected and analyzed.

RESULTS

Forty-six patients were treated in 51 SRS procedures for 120 prostate cancer intracranial metastases. At SRS, the mean patient age was 68.04 ± 9.05 years, the mean time interval from prostate cancer diagnosis to SRS was 4.82 ± 4.89 years, and extracranial dissemination was noted in 34 (73.9%) patients. The median patient Karnofsky Performance Scale (KPS) score at SRS was 80, and neurological symptoms attributed to intracranial involvement were present prior to 39 (76%) SRS procedures. Single-fraction SRS was used in 49 procedures. Stereotactic radiotherapy using 6 Gy in five sessions was utilized in 2 procedures. The median margin dose was 18 (range 6–28) Gy, and the median tumor volume was 2.45 (range 0.04–45) ml. At a median radiological follow-up of 6 (range 0–156) months, local progression was seen with 14 lesions. The median survival following SRS was 15.18 months, and the 1-year overall intracranial progression-free survival was 44%. The KPS score at SRS was noted to be associated with improved overall (p = 0.02) and progression-free survival (p = 0.03). Age ≥ 65 years at SRS was associated with decreased overall survival (p = 0.04). There were no serious grade 3–5 toxicities noted.

CONCLUSIONS

SRS appears to be a safe, well-tolerated, and effective management option for patients with prostate cancer intracranial metastases.

Restricted access

I. Jonathan Pomeraniec, Zhiyuan Xu, Cheng-Chia Lee, Huai-Che Yang, Tomas Chytka, Roman Liscak, Roberto Martinez-Alvarez, Nuria Martinez-Moreno, Luca Attuati, Piero Picozzi, Douglas Kondziolka, Monica Mureb, Kenneth Bernstein, David Mathieu, Michel Maillet, Akiyoshi Ogino, Hao Long, Hideyuki Kano, L. Dade Lunsford, Brad E. Zacharia, Christine Mau, Leonard C. Tuanquin, Christopher Cifarelli, David Arsanious, Joshua Hack, Ronald E. Warnick, Ben A. Strickland, Gabriel Zada, Eric L. Chang, Herwin Speckter, Samir Patel, Dale Ding, Darrah Sheehan, Kimball Sheehan, Svetlana Kvint, Love Y. Buch, Alexander R. Haber, Jacob Shteinhart, Mary Lee Vance, and Jason P. Sheehan

OBJECTIVE

Stereotactic radiosurgery (SRS) provides a safe and effective therapeutic modality for patients with pituitary adenomas. The mechanism of delayed endocrine deficits based on targeted radiation to the hypothalamic-pituitary axis remains unclear. Radiation to normal neuroendocrine structures likely plays a role in delayed hypopituitarism after SRS. In this multicenter study by the International Radiosurgery Research Foundation (IRRF), the authors aimed to evaluate radiation tolerance of structures surrounding pituitary adenomas and identify predictors of delayed hypopituitarism after SRS for these tumors.

METHODS

This is a retrospective review of patients with pituitary adenomas who underwent single-fraction SRS from 1997 to 2019 at 16 institutions within the IRRF. Dosimetric point measurements of 14 predefined neuroanatomical structures along the hypothalamus, pituitary stalk, and normal pituitary gland were made. Statistical analyses were performed to determine the impact of doses to critical structures on clinical, radiographic, and endocrine outcomes.

RESULTS

The study cohort comprised 521 pituitary adenomas treated with SRS. Tumor control was achieved in 93.9% of patients over a median follow-up period of 60.1 months, and 22.5% of patients developed new loss of pituitary function with a median treatment volume of 3.2 cm3. Median maximal radiosurgical doses to the hypothalamus, pituitary stalk, and normal pituitary gland were 1.4, 7.2, and 11.3 Gy, respectively. Nonfunctioning adenoma status, younger age, higher margin dose, and higher doses to the pituitary stalk and normal pituitary gland were independent predictors of new or worsening hypopituitarism. Neither the dose to the hypothalamus nor the ratio between doses to the pituitary stalk and gland were significant predictors. The threshold of the median dose to the pituitary stalk for new endocrinopathy was 10.7 Gy in a single fraction (OR 1.77, 95% CI 1.17–2.68, p = 0.006).

CONCLUSIONS

SRS for the treatment of pituitary adenomas affords a high tumor control rate with an acceptable risk of new or worsening endocrinopathy. This evaluation of point dosimetry to adjacent neuroanatomical structures revealed that doses to the pituitary stalk, with a threshold of 10.7 Gy, and doses to the normal gland significantly increased the risk of post-SRS hypopituitarism. In patients with preserved pre-SRS neuroendocrine function, limiting the dose to the pituitary stalk and gland while still delivering an optimal dose to the tumor appears prudent.

Restricted access

Adomas Bunevicius, Mohand Suleiman, Samir Patel, Roberto Martínez Álvarez, Nuria E. Martinez Moreno, Roman Liscak, Jaromir Hanuska, Anne-Marie Langlois, David Mathieu, Christine Mau, Catherine Caldwell, Leonard C. Tuanquin, Brad E. Zacharia, James McInerney, Cheng-Chia Lee, Huai-Che Yang, Jennifer L. Peterson, Daniel M. Trifiletti, Akiyoshi Ogino, Hideyuki Kano, Ronald E. Warnick, Anissa Saylany, Love Y. Buch, John Y. K. Lee, Ben A. Strickland, Gabriel Zada, Eric L. Chang, L. Dade Lunsford, and Jason Sheehan

OBJECTIVE

Radiation-induced meningiomas (RIMs) are associated with aggressive clinical behavior. Stereotactic radiosurgery (SRS) is sometimes considered for selected RIMs. The authors investigated the effectiveness and safety of SRS for the management of RIMs.

METHODS

From 12 institutions participating in the International Radiosurgery Research Foundation, the authors pooled patients who had prior cranial irradiation and were subsequently clinically diagnosed with WHO grade I meningiomas that were managed with SRS.

RESULTS

Fifty-two patients underwent 60 SRS procedures for histologically confirmed or radiologically suspected WHO grade I RIMs. The median ages at initial cranial radiation therapy and SRS for RIM were 5.5 years and 39 years, respectively. The most common reasons for cranial radiation therapy were leukemia (21%) and medulloblastoma (17%). There were 39 multiple RIMs (35%), the mean target volume was 8.61 ± 7.80 cm3, and the median prescription dose was 14 Gy. The median imaging follow-up duration was 48 months (range 4–195 months). RIM progressed in 9 patients (17%) at a median duration of 30 months (range 3–45 months) after SRS. Progression-free survival at 5 years post-SRS was 83%. Treatment volume ≥ 5 cm3 predicted progression (HR 8.226, 95% CI 1.028–65.857, p = 0.047). Seven patients (14%) developed new neurological symptoms or experienced SRS-related complications or T2 signal change from 1 to 72 months after SRS.

CONCLUSIONS

SRS is associated with durable local control of RIMs in the majority of patients and has an acceptable safety profile. SRS can be considered for patients and tumors that are deemed suboptimal, poor surgical candidates, and those whose tumor again progresses after removal.

Full access

Or Cohen-Inbar, Cheng-Chia Lee, Seyed H. Mousavi, Hideyuki Kano, David Mathieu, Antonio Meola, Peter Nakaji, Norissa Honea, Matthew Johnson, Mahmoud Abbassy, Alireza M. Mohammadi, Danilo Silva, Huai-Che Yang, Inga Grills, Douglas Kondziolka, Gene H. Barnett, L. Dade Lunsford, and Jason Sheehan

OBJECTIVE

Hemangiopericytomas (HPCs) are rare tumors widely recognized for their aggressive clinical behavior, high recurrence rates, and distant and extracranial metastases even after a gross-total resection. The authors report a large multicenter study, through the International Gamma Knife Research Foundation (IGKRF), reviewing management and outcome following stereotactic radiosurgery (SRS) for recurrent or newly discovered HPCs.

METHODS

Eight centers participating in the IGKRF participated in this study. A total of 90 patients harboring 133 tumors were identified. Patients were included if they had a histologically diagnosed HPC managed with SRS during the period 1988–2014 and had a minimum of 6 months' clinical and radiological follow-up. A de-identified database was created. The patients' median age was 48.5 years (range 13–80 years). Prior treatments included embolization (n = 8), chemotherapy (n = 2), and fractionated radiotherapy (n = 34). The median tumor volume at the time of SRS was 4.9 cm3 (range 0.2–42.4 cm3). WHO Grade II (typical) HPCs formed 78.9% of the cohort (n = 71). The median margin and maximum doses delivered were 15 Gy (range 2.8–24 Gy) and 32 Gy (range 8–51 Gy), respectively. The median clinical and radiographic follow-up periods were 59 months (range 6–190 months) and 59 months (range 6–183 months), respectively. Prognostic variables associated with local tumor control and post-SRS survival were evaluated using Cox univariate and multivariate analysis. Actuarial survival after SRS was analyzed using the Kaplan-Meier method.

RESULTS

Imaging studies performed at last follow-up demonstrated local tumor control in 55% of tumors and 62.2% of patients. New remote intracranial tumors were found in 27.8% of patients, and 24.4% of patients developed extracranial metastases. Adverse radiation effects were noted in 6.7% of patients. During the study period, 32.2% of the patients (n = 29) died. The actuarial overall survival was 91.5%, 82.1%, 73.9%, 56.7%, and 53.7% at 2, 4, 6, 8, and 10 years, respectively, after initial SRS. Local progression–free survival (PFS) was 81.7%, 66.3%, 54.5%, 37.2%, and 25.5% at 2, 4, 6, 8, and 10 years, respectively, after initial SRS. In our cohort, 32 patients underwent 48 repeat SRS procedures for 76 lesions. Review of these 76 treated tumors showed that 17 presented as an in-field recurrence and 59 were defined as an out-of-field recurrence. Margin dose greater than 16 Gy (p = 0.037) and tumor grade (p = 0.006) were shown to influence PFS. The development of extracranial metastases was shown to influence overall survival (p = 0.029) in terms of PFS; repeat (multiple) SRS showed additional benefit.

CONCLUSIONS

SRS provides a reasonable rate of local tumor control and a low risk of adverse effects. It also leads to neurological stability or improvement in the majority of patients. Long-term close clinical and imaging follow-up is necessary due to the high probability of local recurrence and distant metastases. Repeat SRS is often effective for treating new or recurrent HPCs.

Free access

Cheng-Chia Lee, Hideyuki Kano, Huai-Che Yang, Zhiyuan Xu, Chun-Po Yen, Wen-Yuh Chung, David Hung-Chi Pan, L. Dade Lunsford, and Jason P. Sheehan

Object

Nonfunctioning pituitary adenomas (NFAs) are the most common type of pituitary adenoma and, when symptomatic, typically require surgical removal as an initial means of management. Gamma Knife radiosurgery (GKRS) is an alternative therapeutic strategy for patients whose comorbidities substantially increase the risks of resection. In this report, the authors evaluated the efficacy and safety of initial GKRS for NFAs.

Methods

An international group of three academic Gamma Knife centers retrospectively reviewed outcome data in 569 patients with NFAs.

Results

Forty-one patients (7.2%) underwent GKRS as primary management for their NFAs because of an advanced age, multiple comorbidities, or patient preference. The median age at the time of radiosurgery was 69 years. Thirty-seven percent of the patients had hypopituitarism before GKRS. Patients received a median tumor margin dose of 12 Gy (range 6.2–25.0 Gy) at a median isodose of 50%. The overall tumor control rate was 92.7%, and the actuarial tumor control rate was 94% and 85% at 5 and 10 years postradiosurgery, respectively. Three patients with tumor growth or symptom progression underwent resection at 3, 3, and 96 months after GKRS, respectively. New or worsened hypopituitarism developed in 10 patients (24%) at a median interval of 37 months after GKRS. One patient suffered new-onset cranial nerve palsy. No other radiosurgical complications were noted. Delayed hypopituitarism was observed more often in patients who had received a tumor margin dose > 18 Gy (p = 0.038) and a maximum dose > 36 Gy (p = 0.025).

Conclusions

In this study, GKRS resulted in long-term control of NFAs in 85% of patients at 10 years. This experience suggests that GKRS provides long-term tumor control with an acceptable risk profile. This approach may be especially valuable in older patients, those with multiple comorbidities, and those who have endocrine-inactive tumors without visual compromise due to mass effect of the adenoma.