Browse

You are looking at 1 - 10 of 146 items for

  • Refine by Access: all x
  • By Author: Wellons, John C. x
Clear All
Restricted access

Matthew E. Pontell, Aaron M. Yengo-Kahn, Emily Taylor, Morgan Kane, J Michael Newton, Kelly A. Bennett, John C. Wellons III, and Stephane A. Braun

OBJECTIVE

The objective of this study was to determine the effects of in utero bipedicle flaps on maternal-fetal morbidity/mortality, the need for CSF diversion, and long-term functional outcomes.

METHODS

Eighty-six patients who underwent fetal myelomeningocele repair from 2011 to 2021 at a single institution were reviewed. Primary outcomes included intrauterine fetal demise, postnatal death, postnatal myelomeningocele repair dehiscence, and CSF diversion by final follow-up.

RESULTS

The cohorts were no different with regard to race, ethnicity, maternal age at fetal surgery, body mass index, gravidity, parity, gestational age at fetal surgery, estimated fetal weight at fetal surgery, or fetal lesion level. Of the 86 patients, 64 underwent primary linear repair and 22 underwent bipedicle flap repair. There were no significant differences in rates of intrauterine fetal demise, postnatal mortality, midline repair site dehiscence, or the need for CSF diversion by final follow-up. Operative times were longer (32.5 vs 18.7 minutes, p < 0.001) and gestational age at delivery was lower (232 vs 241 days, p = 0.01) in the bipedicle flap cohort, but long-term functional outcomes were not different.

CONCLUSIONS

Analysis of the total cohort affirms the long-term benefits of fetal myelomeningocele repair. In utero bipedicle flaps are safe and can be used for high-tension lesions without increasing perioperative risks to the mother or fetus. In utero flaps preserve the long-term benefits seen with primary linear repair and may expand inclusion criteria for fetal repair, providing life-changing care for more patients.

Free access

Brandon G. Rocque, Hailey Jensen, Ron W. Reeder, Abhaya V. Kulkarni, Ian F. Pollack, John C. Wellons III, Robert P. Naftel, Eric M. Jackson, William E. Whitehead, Jonathan A. Pindrik, David D. Limbrick Jr., Patrick J. McDonald, Mandeep S. Tamber, Todd C. Hankinson, Jason S. Hauptman, Mark D. Krieger, Jason Chu, Tamara D. Simon, Jay Riva-Cambrin, John R. W. Kestle, Curtis J. Rozzelle, and

OBJECTIVE

Endoscopic third ventriculostomy (ETV) is an option for treatment of hydrocephalus, including for patients who have a history of previous treatment with CSF shunt insertion. The purpose of this study was to report the success of postshunt ETV by using data from a multicenter prospective registry.

METHODS

Prospectively collected data in the Hydrocephalus Clinical Research Network (HCRN) Core Data Project (i.e., HCRN Registry) were reviewed. Children who underwent ETV between 2008 and 2019 and had a history of previous treatment with a CSF shunt were included. A Kaplan-Meier survival curve was created for the primary outcome: time from postshunt ETV to subsequent CSF shunt placement or revision. Univariable Cox proportional hazards models were created to evaluate for an association between clinical and demographic variables and subsequent shunt surgery. Postshunt ETV complications were also identified and categorized.

RESULTS

A total of 203 children were included: 57% male and 43% female; 74% White, 23% Black, and 4% other race. The most common hydrocephalus etiologies were postintraventricular hemorrhage secondary to prematurity (56, 28%) and aqueductal stenosis (42, 21%). The ETV Success Score ranged from 10 to 80. The median patient age was 4.1 years. The overall success of postshunt ETV at 6 months was 41%. Only the surgeon’s report of a clear view of the basilar artery was associated with a lower likelihood of postshunt ETV failure (HR 0.43, 95% CI 0.23–0.82, p = 0.009). None of the following variables were associated with postshunt ETV success: age at the time of postshunt ETV, etiology of hydrocephalus, sex, race, ventricle size, number of previous shunt operations, ETV performed at time of shunt infection, and use of external ventricular drainage. Overall, complications were reported in 22% of patients, with CSF leak (8.6%) being the most common complication.

CONCLUSIONS

Postshunt ETV was successful in treating hydrocephalus, without subsequent need for a CSF shunt, in 41% of patients, with a clear view of the basilar artery being the only variable significantly associated with success. Complications occurred in 22% of patients. ETV is an option for treatment of hydrocephalus in children who have previously undergone shunt placement, but with a lower than expected likelihood of success.

Restricted access

David S. Hersh, Jonathan E. Martin, Ruth E. Bristol, Samuel R. Browd, Gerald Grant, Nalin Gupta, Todd C. Hankinson, Eric M. Jackson, John R. W. Kestle, Mark D. Krieger, Abhaya V. Kulkarni, Casey J. Madura, Jonathan Pindrik, Ian F. Pollack, Jeffrey S. Raskin, Jay Riva-Cambrin, Curtis J. Rozzelle, Jodi L. Smith, and John C. Wellons III

OBJECTIVE

Long-term follow-up is often recommended for patients with hydrocephalus, but the frequency of clinical follow-up, timing and modality of imaging, and duration of surveillance have not been clearly defined. Here, the authors used the modified Delphi method to identify areas of consensus regarding the modality, frequency, and duration of hydrocephalus surveillance following surgical treatment.

METHODS

Pediatric neurosurgeons serving as institutional liaisons to the Hydrocephalus Clinical Research Network (HCRN), or its implementation/quality improvement arm (HCRNq), were invited to participate in this modified Delphi study. Thirty-seven consensus statements were generated and distributed via an anonymous electronic survey, with responses structured as a 4-point Likert scale (strongly agree, agree, disagree, strongly disagree). A subsequent, virtual meeting offered the opportunity for open discussion and modification of the statements in an effort to reach consensus (defined as ≥ 80% agreement or disagreement).

RESULTS

Nineteen pediatric neurosurgeons participated in the first round, after which 15 statements reached consensus. During the second round, 14 participants met virtually for review and discussion. Some statements were modified and 2 statements were combined, resulting in a total of 36 statements. At the conclusion of the session, consensus was achieved for 17 statements regarding the following: 1) the role of standardization; 2) preferred imaging modalities; 3) postoperative follow-up after shunt surgery (subdivided into immediate postoperative imaging, delayed postoperative imaging, routine clinical surveillance, and routine radiological surveillance); and 4) postoperative follow-up after an endoscopic third ventriculostomy. Consensus could not be achieved for 19 statements.

CONCLUSIONS

Using the modified Delphi method, 17 consensus statements were developed with respect to both clinical and radiological follow-up after a shunt or endoscopic third ventriculostomy. The frequency, modality, and duration of surveillance were addressed, highlighting areas in which no clear data exist to guide clinical practice. Although further studies are needed to evaluate the clinical utility and cost-effectiveness of hydrocephalus surveillance, the current study provides a framework to guide future efforts to develop standardized clinical protocols for the postoperative surveillance of patients with hydrocephalus. Ultimately, the standardization of hydrocephalus surveillance has the potential to improve patient care as well as optimize the use of healthcare resources.

Restricted access

Anastasia Arynchyna-Smith, Curtis J. Rozzelle, Hailey Jensen, Ron W. Reeder, Abhaya V. Kulkarni, Ian F. Pollack, John C. Wellons III, Robert P. Naftel, Eric M. Jackson, William E. Whitehead, Jonathan A. Pindrik, David D. Limbrick Jr., Patrick J. McDonald, Mandeep S. Tamber, Brent R. O’Neill, Jason S. Hauptman, Mark D. Krieger, Jason Chu, Tamara D. Simon, Jay Riva-Cambrin, John R. W. Kestle, Brandon G. Rocque, and

OBJECTIVE

Primary treatment of hydrocephalus with endoscopic third ventriculostomy (ETV) and choroid plexus cauterization (CPC) is well described in the neurosurgical literature, with wide reported ranges of success and complication rates. The purpose of this study was to describe the safety and efficacy of ETV revision after initial ETV+CPC failure.

METHODS

Prospectively collected data in the Hydrocephalus Clinical Research Network Core Data Project registry were reviewed. Children who underwent ETV+CPC as the initial treatment for hydrocephalus between 2013 and 2019 and in whom the initial ETV+CPC was completed (i.e., not abandoned) were included. Log-rank survival analysis (the primary analysis) was used to compare time to failure (defined as any other surgical treatment for hydrocephalus or death related to hydrocephalus) of initial ETV+CPC versus that of ETV revision by using random-effects modeling to account for the inclusion of patients in both the initial and revision groups. Secondary analysis compared ETV revision to shunt placement after failure of initial ETV+CPC by using the log-rank test, as well as shunt failure after ETV+CPC to that after ETV revision. Cox regression analysis was used to identify predictors of failure among children treated with ETV revision.

RESULTS

The authors identified 521 ETV+CPC procedures that met their inclusion criteria. Ninety-one children underwent ETV revision after ETV+CPC failure. ETV revision had a lower 1-year success rate than initial ETV+CPC (29.5% vs 45%, p < 0.001). ETV revision after initial ETV+CPC failure had a lower success rate than shunting (29.5% vs 77.8%, p < 0.001). Shunt survival after initial ETV+CPC failure was not significantly different from shunt survival after ETV revision failure (p = 0.963). Complication rates were similar for all examined surgical procedures (initial ETV+CPC, ETV revision, ventriculoperitoneal shunt [VPS] placement after ETV+CPC, and VPS placement after ETV revision). Only young age was predictive of ETV revision failure (p = 0.02).

CONCLUSIONS

ETV revision had a significantly lower 1-year success rate than initial ETV+CPC and VPS placement after ETV+CPC. Complication rates were similar for all studied procedures. Younger age, but not time since initial ETV+CPC, was a risk factor for ETV revision failure.

Free access

S. Hassan A. Akbari, Alexander T. Yahanda, Laurie L. Ackerman, P. David Adelson, Raheel Ahmed, Gregory W. Albert, Philipp R. Aldana, Tord D. Alden, Richard C. E. Anderson, David F. Bauer, Tammy Bethel-Anderson, Karin Bierbrauer, Douglas L. Brockmeyer, Joshua J. Chern, Daniel E. Couture, David J. Daniels, Brian J. Dlouhy, Susan R. Durham, Richard G. Ellenbogen, Ramin Eskandari, Herbert E. Fuchs, Gerald A. Grant, Patrick C. Graupman, Stephanie Greene, Jeffrey P. Greenfield, Naina L. Gross, Daniel J. Guillaume, Todd C. Hankinson, Gregory G. Heuer, Mark Iantosca, Bermans J. Iskandar, Eric M. Jackson, George I. Jallo, James M. Johnston, Bruce A. Kaufman, Robert F. Keating, Nicklaus R. Khan, Mark D. Krieger, Jeffrey R. Leonard, Cormac O. Maher, Francesco T. Mangano, J. Gordon McComb, Sean D. McEvoy, Thanda Meehan, Arnold H. Menezes, Michael S. Muhlbauer, Brent R. O’Neill, Greg Olavarria, John Ragheb, Nathan R. Selden, Manish N. Shah, Chevis N. Shannon, Joshua S. Shimony, Matthew D. Smyth, Scellig S. D. Stone, Jennifer M. Strahle, Mandeep S. Tamber, James C. Torner, Gerald F. Tuite, Elizabeth C. Tyler-Kabara, Scott D. Wait, John C. Wellons III, William E. Whitehead, Tae Sung Park, and David D. Limbrick Jr.

OBJECTIVE

The aim of this study was to determine differences in complications and outcomes between posterior fossa decompression with duraplasty (PFDD) and without duraplasty (PFD) for the treatment of pediatric Chiari malformation type I (CM1) and syringomyelia (SM).

METHODS

The authors used retrospective and prospective components of the Park-Reeves Syringomyelia Research Consortium database to identify pediatric patients with CM1-SM who received PFD or PFDD and had at least 1 year of follow-up data. Preoperative, treatment, and postoperative characteristics were recorded and compared between groups.

RESULTS

A total of 692 patients met the inclusion criteria for this database study. PFD was performed in 117 (16.9%) and PFDD in 575 (83.1%) patients. The mean age at surgery was 9.86 years, and the mean follow-up time was 2.73 years. There were no significant differences in presenting signs or symptoms between groups, although the preoperative syrinx size was smaller in the PFD group. The PFD group had a shorter mean operating room time (p < 0.0001), fewer patients with > 50 mL of blood loss (p = 0.04), and shorter hospital stays (p = 0.0001). There were 4 intraoperative complications, all within the PFDD group (0.7%, p > 0.99). Patients undergoing PFDD had a 6-month complication rate of 24.3%, compared with 13.7% in the PFD group (p = 0.01). There were no differences between groups for postoperative complications beyond 6 months (p = 0.33). PFD patients were more likely to require revision surgery (17.9% vs 8.3%, p = 0.002). PFDD was associated with greater improvements in headaches (89.6% vs 80.8%, p = 0.04) and back pain (86.5% vs 59.1%, p = 0.01). There were no differences between groups for improvement in neurological examination findings. PFDD was associated with greater reduction in anteroposterior syrinx size (43.7% vs 26.9%, p = 0.0001) and syrinx length (18.9% vs 5.6%, p = 0.04) compared with PFD.

CONCLUSIONS

PFD was associated with reduced operative time and blood loss, shorter hospital stays, and fewer postoperative complications within 6 months. However, PFDD was associated with better symptom improvement and reduction in syrinx size and lower rates of revision decompression. The two surgeries have low intraoperative complication rates and comparable complication rates beyond 6 months.

Free access

Jason Chu, Hailey Jensen, Richard Holubkov, Mark D. Krieger, Abhaya V. Kulkarni, Jay Riva-Cambrin, Curtis J. Rozzelle, David D. Limbrick Jr., John C. Wellons III, Samuel R. Browd, William E. Whitehead, Ian F. Pollack, Tamara D. Simon, Mandeep S. Tamber, Jason S. Hauptman, Jonathan Pindrik, Robert P. Naftel, Patrick J. McDonald, Todd C. Hankinson, Eric M. Jackson, Brandon G. Rocque, Ron Reeder, James M. Drake, John R. W. Kestle, and

OBJECTIVE

Two previous Hydrocephalus Clinical Research Network (HCRN) studies have demonstrated that compliance with a standardized CSF shunt infection protocol reduces shunt infections. In this third iteration, a simplified protocol consisting of 5 steps was implemented. This analysis provides an updated evaluation of protocol compliance and evaluates modifiable shunt infection risk factors.

METHODS

The new simplified protocol was implemented at HCRN centers on November 1, 2016, for all shunt procedures, excluding external ventricular drains, ventricular reservoirs, and subgaleal shunts. Procedures performed through December 31, 2019, were included (38 months). Compliance with the protocol, use of antibiotic-impregnated catheters (AICs), and other variables of interest were collected at the index operation. Outcome events for a minimum of 6 months postoperatively were recorded. The definition of infection was unchanged from the authors’ previous report.

RESULTS

A total of 4913 procedures were performed at 13 HCRN centers. The overall infection rate was 5.1%. Surgeons were compliant with all 5 steps of the protocol in 79.4% of procedures. The infection rate for the protocol alone was 8.1% and dropped to 4.9% when AICs were added. Multivariate analysis identified having ≥ 2 complex chronic conditions (odds ratio [OR] 1.76, 95% confidence interval [CI] 1.26–2.44, p = 0.01) and a history of prior shunt surgery within 12 weeks (OR 1.84, 95% CI 1.37–2.47, p < 0.01) as independent risk factors for shunt infection. The use of AICs (OR 0.70, 95% CI 0.50–0.97, p = 0.05) and vancomycin irrigation (OR 0.36, 95% CI 0.21–0.62, p < 0.01) were identified as independent factors protective against shunt infection.

CONCLUSIONS

The authors report the third iteration of their quality improvement protocol to reduce the risk of shunt infection. Compliance with the protocol was high. These updated data suggest that the incorporation of AICs is an important, modifiable infection prevention measure. Vancomycin irrigation was also identified as a protective factor but requires further study to better understand its role in preventing shunt infection.

Restricted access

David S. Hersh, Jonathan E. Martin, and John C. Wellons III

Free access

Syed Hassan A. Akbari, Asad A. Rizvi, Travis S. CreveCoeur, Rowland H. Han, Jacob K. Greenberg, James Torner, Douglas L. Brockmeyer, John C. Wellons III, Jeffrey R. Leonard, Francesco T. Mangano, James M. Johnston, Manish N. Shah, Bermans J. Iskandar, Raheel Ahmed, Gerald F. Tuite, Bruce A. Kaufman, David J. Daniels, Eric M. Jackson, Gerald A. Grant, Alexander K. Powers, Daniel E. Couture, P. David Adelson, Tord D. Alden, Philipp R. Aldana, Richard C. E. Anderson, Nathan R. Selden, Karin Bierbrauer, William Boydston, Joshua J. Chern, William E. Whitehead, Robert C. Dauser, Richard G. Ellenbogen, Jeffrey G. Ojemann, Herbert E. Fuchs, Daniel J. Guillaume, Todd C. Hankinson, Brent R. O’Neill, Mark Iantosca, W. Jerry Oakes, Robert F. Keating, Paul Klimo Jr., Michael S. Muhlbauer, J. Gordon McComb, Arnold H. Menezes, Nickalus R. Khan, Toba N. Niazi, John Ragheb, Chevis N. Shannon, Jodi L. Smith, Laurie L. Ackerman, Andrew H. Jea, Cormac O. Maher, Prithvi Narayan, Gregory W. Albert, Scellig S. D. Stone, Lissa C. Baird, Naina L. Gross, Susan R. Durham, Stephanie Greene, Robert C. McKinstry, Joshua S. Shimony, Jennifer M. Strahle, Matthew D. Smyth, Ralph G. Dacey Jr., Tae Sung Park, and David D. Limbrick Jr.

OBJECTIVE

The goal of this study was to assess the social determinants that influence access and outcomes for pediatric neurosurgical care for patients with Chiari malformation type I (CM-I) and syringomyelia (SM).

METHODS

The authors used retro- and prospective components of the Park-Reeves Syringomyelia Research Consortium database to identify pediatric patients with CM-I and SM who received surgical treatment and had at least 1 year of follow-up data. Race, ethnicity, and insurance status were used as comparators for preoperative, treatment, and postoperative characteristics and outcomes.

RESULTS

A total of 637 patients met inclusion criteria, and race or ethnicity data were available for 603 (94.7%) patients. A total of 463 (76.8%) were non-Hispanic White (NHW) and 140 (23.2%) were non-White. The non-White patients were older at diagnosis (p = 0.002) and were more likely to have an individualized education plan (p < 0.01). More non-White than NHW patients presented with cerebellar and cranial nerve deficits (i.e., gait ataxia [p = 0.028], nystagmus [p = 0.002], dysconjugate gaze [p = 0.03], hearing loss [p = 0.003], gait instability [p = 0.003], tremor [p = 0.021], or dysmetria [p < 0.001]). Non-White patients had higher rates of skull malformation (p = 0.004), platybasia (p = 0.002), and basilar invagination (p = 0.036). Non-White patients were more likely to be treated at low-volume centers than at high-volume centers (38.7% vs 15.2%; p < 0.01). Non-White patients were older at the time of surgery (p = 0.001) and had longer operative times (p < 0.001), higher estimated blood loss (p < 0.001), and a longer hospital stay (p = 0.04). There were no major group differences in terms of treatments performed or complications. The majority of subjects used private insurance (440, 71.5%), whereas 175 (28.5%) were using Medicaid or self-pay. Private insurance was used in 42.2% of non-White patients compared to 79.8% of NHW patients (p < 0.01). There were no major differences in presentation, treatment, or outcome between insurance groups. In multivariate modeling, non-White patients were more likely to present at an older age after controlling for sex and insurance status (p < 0.01). Non-White and male patients had a longer duration of symptoms before reaching diagnosis (p = 0.033 and 0.004, respectively).

CONCLUSIONS

Socioeconomic and demographic factors appear to influence the presentation and management of patients with CM-I and SM. Race is associated with age and timing of diagnosis as well as operating room time, estimated blood loss, and length of hospital stay. This exploration of socioeconomic and demographic barriers to care will be useful in understanding how to improve access to pediatric neurosurgical care for patients with CM-I and SM.

Free access

William E. Whitehead, Jay Riva-Cambrin, John C. Wellons III, Abhaya V. Kulkarni, David D. Limbrick Jr., Vanessa L. Wall, Curtis J. Rozzelle, Todd C. Hankinson, Patrick J. McDonald, Mark D. Krieger, Ian F. Pollack, Mandeep S. Tamber, Jonathan Pindrik, Jason S. Hauptman, Robert P. Naftel, Chevis N. Shannon, Jason Chu, Eric M. Jackson, Samuel R. Browd, Tamara D. Simon, Richard Holubkov, Ron W. Reeder, Hailey Jensen, Jenna E. Koschnitzky, Paul Gross, James M. Drake, and John R. W. Kestle

OBJECTIVE

The primary objective of this trial was to determine if shunt entry site affects the risk of shunt failure.

METHODS

The authors performed a parallel-design randomized controlled trial with an equal allocation of patients who received shunt placement via the anterior entry site and patients who received shunt placement via the posterior entry site. All patients were children with symptoms or signs of hydrocephalus and ventriculomegaly. Patients were ineligible if they had a prior history of shunt insertion. Patients received a ventriculoperitoneal shunt after randomization; randomization was stratified by surgeon. The primary outcome was shunt failure. The planned minimum follow-up was 18 months. The trial was designed to achieve high power to detect a 10% or greater absolute difference in the shunt failure rate at 1 year. An independent, blinded adjudication committee determined eligibility and the primary outcome. The study was conducted by the Hydrocephalus Clinical Research Network.

RESULTS

The study randomized 467 pediatric patients at 14 tertiary care pediatric hospitals in North America from April 2015 to January 2019. The adjudication committee, blinded to intervention, excluded 7 patients in each group for not meeting the study inclusion criteria. For the primary analysis, there were 229 patients in the posterior group and 224 patients in the anterior group. The median patient age was 1.3 months, and the most common etiologies of hydrocephalus were postintraventricular hemorrhage secondary to prematurity (32.7%), myelomeningocele (16.8%), and aqueductal stenosis (10.8%). There was no significant difference in the time to shunt failure between the entry sites (log-rank test, stratified by age < 6 months and ≥ 6 months; p = 0.061). The hazard ratio (HR) of a posterior shunt relative to an anterior shunt was calculated using a univariable Cox regression model and was nonsignificant (HR 1.35, 95% CI, 0.98–1.85; p = 0.062). No significant difference was found between entry sites for the surgery duration, number of ventricular catheter passes, ventricular catheter location, and hospital length of stay. There were no significant differences between entry sites for intraoperative complications, postoperative CSF leaks, pseudomeningoceles, shunt infections, skull fractures, postoperative seizures, new-onset epilepsy, or intracranial hemorrhages.

CONCLUSIONS

This randomized controlled trial comparing the anterior and posterior shunt entry sites has demonstrated no significant difference in the time to shunt failure. Anterior and posterior entry site surgeries were found to have similar outcomes and similar complication rates.